Dmitry V. Gutsulyak and Georgii I. Nikonov
COMMUNICATIONS
standard (TMS or Cp2Fe), and t-BuCN (0.002–0.004 mL, 10–
20 mol%) in acetone-d6 (0.6 mL) was added complex
1 (0.005 g, 5 mol%). The resulting mixture was stirred at
room temperature and the progress of the reaction was
monitored by NMR spectroscopy.
Hanada, Y. Motoyama, H. Nagashima, Tetrahedron
Lett. 2006, 47, 6173; p) S. Bower, K. A. Kreutzer, S. L.
Buchwald, Angew. Chem. 1996, 108, 1662; Angew.
Chem. Int. Ed. Engl. 1996, 35, 1515.
[3] Esters: a) S. C. Berc, K. A. Kreutzer, S. L. Buchwald, J.
Am. Chem. Soc. 1991, 113, 5093; b) S. C. Berc, S. L.
Buchwald, J. Org. Chem. 1992, 57, 3751; c) K. J. Barr,
S. C. Berk, S. L. Buchwald, J. Org. Chem. 1994, 59,
4323; d) S. W. Breeden, N. J. Lawrence, Synlett 1994,
833; e) Z. Mao, B. T. Gregg, A. R. Cutler, J. Am.
Chem. Soc. 1995, 117, 10139; f) M. Igarashi, R. Mizuno,
T. Fuchikami, Tetrahedron Lett. 2001, 42, 2149; g) A. C.
Fernandes, C. C. Romao, J. Mol. Catal. A: Chem. 2006,
253, 96; h) N. Sakai, T. Moriya, T. Konakahara, J. Org.
Chem. 2007, 72, 5920; i) T. Ohta, M. Kamiya, M. Nobu-
tomo, K. Kusui, I. Furukawa, Bull. Chem. Soc. Jpn.
2005, 78, 1856; j) T. Ohta, M. Kamiya, K. Kusui, T.
Michibata, M. Nobutomo, I. Furukawa, Tetrahedron
Lett. 1999, 40, 6963; k) K. Matsubara, T. Iura, T. Maki,
H. Nagashima, J. Org. Chem. 2002, 67, 4985.
[4] Nitriles: a) R. Calas, E. Frainnet, A. Bazouin, Compt.
Rend. 1961, 252, 420; b) T. Fuchigami, I. Igarashi, Japa-
nese Patent Application JP11228579, 1999; c) A. M. Ca-
porusso, N. Panziera, P. Pertici, E. Pitzalis, P. Salvadori,
G. Vitulli, G. Martra, J. Mol. Cat. A: Chem. 1999, 150,
275; d) T. Murai, T. Sakane, S. Kato, J. Org. Chem.
1990, 55, 449; e) T. Murai, T. Sakane, S. Kato, Tetrahe-
dron Lett. 1985, 26, 545.
Representative Example of a Preparative-Scale
Reduction with Catalyst Recycling
To
a solution of 4-BrC6H4COCl (0.500 g, 2.28 mmol),
HSiMe2Ph (0.400 mL, 2.61 mmol), and t-BuCN (0.025 mL,
10 mol%) in CH2Cl2 or acetone (30 mL) was added complex
1 (0.065 g, 5 mol%). The resulting mixture was stirred at
room temperature. Full conversion of the acid chloride was
observed within 3 h (in acetone) or 1 day (in CH2Cl2). To
the resulting mixture was added hexane (30 mL) and the so-
lution was concentrated to 5 mL under vacuum. The prod-
ucts were extracted with hexane (3ꢂ10 mL). The remaining
catalyst was used again (4 times) with the same amounts of
the starting reagents. The aldehyde was recrystallized each
time from hexane solutions at À808C. Yields: ~70% (reac-
tions in CH2Cl2) or ~90% (reactions in acetone).
Acknowledgements
This work was supported by NSERC. We are grateful to the
CFI/OIT for a generous equipment grant.
[5] Nitriles: a) A. Y. Khalimon, R. Simionescu, L. G. Kuz-
mina, J. A. K. Howard, G. I. Nikonov, Angew. Chem.
2008, 120, 7815; Angew. Chem. Int. Ed. 2008, 47, 7704;
b) E. Peterson, A. Y. Khalimon, R. Simionescu, L. G.
Kuzmina, J. A. K. Howard, G. I. Nikonov, J. Am.
Chem. Soc. 2009, 131, 908; c) D. V. Gutsulyak, G. I. Ni-
konov, Angew. Chem. 2010, 122, 7715; Angew. Chem.
Int. Ed. 2010, 49, 7553.
References
[1] a) M. Hudlicky, Reductions in Organic Chemistry, ACS
monograph No. 188, American Chemical Society,
Washington DC, 1996; b) R. C. Larock, Comprehensive
Organic Transformations: a Guide to Functional Group
Preparation, 2nd edn., Wiley-VCH, New York, 1999;
c) Comprehensive Organic Chemistry, V.3, Part 9 (Eds.:
D. Barton, W. D. Ollis), Pergamon, Oxford, 1979.
À
[6] For related catalytic C O bond cleavage by silanes in
alkyl ethers and epoxides, see: a) S. Park, M. Broo-
khart, Chem. Commun. 2011, 47, 3643; b) J. Yang, P. S.
White, M. Brookhart, J. Am. Chem. Soc. 2008, 130,
17509.
[2] Amides: a) S. Das, D. Addis, S. Zhou, K. Junge, M.
Beller, J. Am. Chem. Soc. 2010, 132, 1770; b) S. Zhou,
K. Junge, D. Addis, S. Das, M. Beller, Angew. Chem.
2009, 121, 9671; Angew. Chem. Int. Ed. 2009, 48, 9507;
c) Y. Sunada, H. Kawakami, T. Imaoka, Y. Motoyama,
H. Nagashima, Angew. Chem. 2009, 121, 9675; Angew.
Chem. Int. Ed. 2009, 48, 9511; d) S. Hanada, E. Tsutsu-
mi, Y. Motoyama, H. Nagashima, J. Am. Chem. Soc.
2009, 131, 15032; e) S. Hanada, T. Ishida, Y. Motoyama,
H. Nagashima, J. Org. Chem. 2007, 72, 7551; f) K. Sel-
vakumar, K. Rangareddy, J. F. Harrod, Can. J. Chem.
2004, 82, 1244; g) K. Selvakumar, J. F. Harrod, Angew.
Chem. 2001, 113, 2187; Angew. Chem. Int. Ed. 2001, 40,
2129; h) K. Rangareddy, K. Selvakumar, J. F. Harrod, J.
Org. Chem. 2004, 69, 6843; i) M. Igarashi, T. Fuchikami,
Tetrahedron Lett. 2001, 42, 1945; j) R. Kuwano, M. Ta-
kahashi, Y. Ito, Tetrahedron Lett. 1998, 39, 1017; k) N.
Sakai, K. Fujii, T. Konakahara, Tetrahedron Lett. 2008,
49, 6873; l) A. C. Fernandes, C. C. Romao, J. Mol.
Catal A: Chem. 2007, 272, 60; m) H. Sasakuma, Y. Mo-
toyama, H. Nagashima, Chem. Commun. 2007, 46,
4916; n) Y. Motoyama, K. Mitsui, T. Ishida, H. Naga-
shima, J. Am. Chem. Soc. 2005, 127, 13150; o) S.
[7] a) H. C. Brown, R. F. McFarlin, J. Am. Chem. Soc.
1956, 78, 252; b) H. C. Brown, B. C. Subba Rao, J. Am.
Chem. Soc. 1958, 80, 5377; c) H. C. Brown, S. Krishna-
murthy, Tetrahedron 1979, 35, 567; d) J. S. Cha, H. C.
Brown, J. Org. Chem. 1993, 58, 4732; e) M. A. Delashe-
ras, J. J. Vaquero, J. L. Garcianavio, J. Alvarezbuilla,
Tetrahedron Lett. 1995, 36, 455.
[8] a) P. Four, F. Guibe, J. Org. Chem. 1981, 46, 4439; b) C.
Malanga, S. Mannucci, L. Lardicci, Tetrahedron Lett.
1997, 38, 8093; c) K. Inoue, M. Yasuda, I. Shibata, A.
Baba, Tetrahedron Lett. 2000, 41, 113; d) P. Le Mꢃnez,
A. Hamze, O. Provot, J.-D. Brion, M. Alami, Synlett
2010, 1101.
[9] a) T. N. Sorrell, P. S. Pearlman, J. Org. Chem. 1980, 45,
3449; b) J. S. Cha, Org. Prep. Proced. Int. 1989, 21, 451;
c) J. C. Leblanc, C. Moꢄse, J. Tirouflet, J. Organomet.
Chem. 1985, 292, 225; d) P. L. Gaus, S. C. Kao, K.
Youngdahl, M. Y. Darensbourg, J. Am. Chem. Soc.
1985, 107, 2203.
610
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2012, 354, 607 – 611