62%) than analogous imine derivatives in entries B-D. The
imine nitrogen is far more basic and presumably more
nucleophilic in this system. Stabilization of the carbene
complex intermediate 6 by the amine nitrogen lone pair might
also play a role in the higher yields obtained from the N,N-
dimethylhydrazone.
Scheme 4
Structurally diverse N,N-dimethylhydrazone derivatives of
enyne 4 were prepared, and their subsequent reaction with
carbene complex 1 was examined (entries E-K). The
reaction appears to be quite general with respect to substitu-
tion on the alkene and alkyne and led to monosubstituted
(entry G), 1,2-disubstituted (entries A, E, F), and 1,3-
disubstituted (entries H and I) N-aminopyrrole derivatives
in good yields. The trisubstituted N-aminopyrrole derivatives
in entries J and K were obtained in considerably lower yield.
These highly electron-rich compounds rapidly turned dark
colors upon prolonged exposure to air, and thus the low yield
in these cases might be attributed to product instability.
As a further test of the efficiency of pyrrole formation in
entries J and K, the coupling of enyne-hydrazone 4K with
carbene complex 1715 was tested (Scheme 4). As expected,
the initially formed pyrrole 18K undergoes an intramolecular
Diels-Alder reaction followed by aminonitrene extrusion16
to afford the phenanthrene derivative 20K. The reaction is
quite efficient and affords dehydro-steroid product 20K in
68% yield. The reaction employing the six-membered ring
analogue 4J proceeded similarly; however, the nitrogen
bridge remained intact under the reaction conditions, leading
to compound 19J in 72% yield. The differing stability of
the nitrogen bridge in compounds 19J and 19K is somewhat
surprising. The efficient formation of 19J and 20K suggests
that pyrrole formation in entries J and K is efficient and that
the low yields are likely due to difficulty in isolating the
extremely electron-rich pyrroles produced in these two
examples.
substrates differing in the degree of alkyl substitution on the
alkene and alkyne substituents. Optimal yields have been
obtained using N,N-dimethylhydrazones. These reactions lead
to N-aminopyrrole derivatives, which to date have been
synthesized primarily from either reaction of 1,4-dicarbonyl
derivatives with hydrazines17 or from reaction of RCHdCH-
NdN-COR derivatives with enolates.18 N-Aminopyrrole
derivatives have proven to be highly useful for cycloaroma-
tization reactions16 and can be converted to simple pyrroles
through reduction.19 Further investigation of the scope of this
novel pyrrole-forming reaction and the synthetic potential
of the pyrrole products is currently underway in this
laboratory.
Acknowledgment. The authors thank the National Insti-
tutes of Health (SCORE Program) for financial support of
this research. We thank Yi Zhang, Alejandro Camacho, and
Adrian Rodriquez for experimental assistance.
In conclusion, the conversion of enyne-imines (4) to
pyrroles (5, 16) has been demonstrated for a variety of
(8) (a) Barluenga, J.; Tomas, M.; Rubio, E.; Lopaz-Peligrino, J. A.;
Garcia-Granda, S.; Priede, M. P. J. Am. Chem. Soc. 1999, 121, 3065-
3071. (b) Barluenga, J.; Ballesteros, A.; Santamaria, J.; Tomas, M. J.
Organomet. Chem. 2002, 643-644, 363-368; the reaction under study in
this manuscript affords pyrroles as minor products.
Supporting Information Available: Detailed experi-
mental for synthesis of compounds 4A-K, 5F, 5K, 16A-
E, 16G-J, and 20K and characterization data for compounds
5F, 16A-E, 16G-J, 19J, and 20K. This material is
(9) For successful application of this theory in a related reaction, see:
Chen, M. J.; Chung, S. T.; Liu, R. S. Tetrahedron 2000, 56, 5029-5035.
(10) Arnold, Z.; Holy, A. Collect. Czech. Chem. Commun. 1961, 26,
3059-3073.
OL034414J
(11) Severin, T.; Wanninger, G.; Lerche, H. Chem. Ber. 1984, 117,
2875-2885.
(17) Recent examples: (a) Gadaginamath, G. S.; Shyadligeri, A. S. Indian
J. Chem. B 2000, 39B, 31-35. (b) Al-Ashmawy, M. I.; El-Samii, Z. K. A.;
El Feky, S. A.; Osman, N. A. Boll. Chim. Farm. 1998, 137, 110-114. (c)
Hiremath, U. S.; Yelamaggad, C. V.; Badami, B. V.; Puranik, G. S. J. Chem.
Res., Synop. 1994, 502-503. (d) Jacobi, P. A.; Cai, G. Heterocycles 1993,
35, 1103-1120.
(18) Recent examples: (a) Attanasi, O. A.; De Crescentini, L.; Filippone,
P.; Fringuelli, F.; Mantellini, F.; Matteucci, M.; Piermatti, O.; Pizzo, F.
HelV. Chim. Acta 2001, 84, 513-525. (b) Attanasi, O. A.; De Crescentini,
L.; Filippone, P.; Mantellini, F.; Tietze, L. F. Tetrahedron 2001, 57, 5855-
5863. (c) Attanasi, O. A.; Filippone, P.; Perrulli, F. R.; Santeusanio, S.
Tetrahedron 2001, 57, 1387-1394. (d) Attanasi, O. A.; De Crescentini,
L.; Filippone, P.; Mantellini, F. Synlett 2000, 955-958.
(12) Duboudin, J. G.; Jousseaume, B.; Bonakdar, A. J. Organomet. Chem.
1979, 168, 227-232.
(13) Piers, E.; Wong, T.; Coish, P. D.; Rogers, C. Can. J. Chem. 1994,
72, 1816-1819.
(14) (a) The pKa of protonated N,N-dimethylhydrazones is around 10.
Zzerev, V. V.; Pylaeva, T. N.; Stolyarov, A. P.; Kitaev, Y. P. J. Org. Chem.
USSR 1978, 14, 717-720. (b) The pKa of a protonated N-alkylimine is
around 8. Buist, G. J.; Lucas, H. J. J. Am. Chem. Soc. 1957, 79, 6157-
6160.
(15) For previous uses of this carbene complex, see: Hohmann, F.;
Siemoneit, S.; Nieger, M.; Kotila, S.; Do¨tz, K. H. Chem. Eur. J. 1997, 3,
853-859.
(16) (a) Carpino, L. A.; Padykula, R. E.; Lee, S. N.; Han, G. Y.; Kirkley,
R. K. J. Org. Chem. 1988, 53, 6047-6053. (b) Carpino, L. A.; Padykula,
R. E.; Barr, D. E.; Hall, F. H.; Krause, J. G.; Dufresne, R. F.; Thoman, C.
J. J. Org. Chem. 1988, 53, 2565-2572. (c) Schultz, A. G.; Shen, M.
Tetrahedron Lett. 1979, 20, 2969-2972.
(19) (a) Enders, D.; Maassen, R.; Han, S. H. Liebigs Ann. 1996, 1565-
1574. (b) Sewald, N.; Wendisch, V. Tetrahedron: Asymmetry 1996, 7,
1269-1272. (c) Attanasi, O. A.; Filippone, P.; Perrulli, F. R.; Santeusanio,
S. Tetrahedron 2001, 57, 1387-1394. (d) Baxter, A. J. G.; Fuher, J.; Teague,
S. J. Synthesis 1994, 207-211.
Org. Lett., Vol. 5, No. 12, 2003
2045