Azomethine-dihydroquinazolinone Conjugates as Cancer and Cholinesterase Inhibitors
Medicinal Chemistry, 2016, Vol. 12, No. 1 81
M. Transition metal complexes of 3-aryl-2-substituted 1,2-
dihydroquinazolin-4(3H)-one derivatives: New class of analgesic
and anti-inflammatory agents. Eur. J. Med. Chem., 2010, 45(6),
2277-82.
Mizutani, T.; Nagase, T.; Ito, S.; Miyamoto, Y.; Tanaka, T.; Take-
naga, N.; Tokita, S.; Sato, N. Development of novel 2-[4-
(aminoalkoxy)phenyl]-4(3H)-quinazolinone derivatives as potent
and selective histamine H3 receptor inverse agonists. Bioorg. Med.
Chem. Lett., 2008, 18(23), 6041-5.
[24]
[25]
[26]
Schnell, J. R.; Chou, J. J. Structure and mechanism of the M2 pro-
ton channel of influenza A virus. Nature, 2008, 451(7178), 591-
595.
Pielak, R. M.; Jason R.; Schnell, J. R. Mechanism of drug inhibi-
tion and drug resistance of influenza A M2 channel. Proc. Natl.
Acad. Sci. USA., 2009, 106(18), 7379-7384.
Wang, J. F. Insights from studying the mutation-induced allostery
in the M2 proton channel by molecular dynamics. Protein Eng.
Des. Sel., (PEDS), 2010, 23(8), 663-666.
[6]
[7]
Giri, R. S.; Thaker, H. M.; Giordano, T.; Williams, J.; Rogers, D.;
Vasu, K. K.; Sudarsanam, V. Design, synthesis and evaluation of
novel 2-thiophen-5-yl-3H-quinazolin-4-one analogues as inhibitors
of transcription factors NF-ꢀB and AP-1 mediated transcriptional
activation: Their possible utilization as anti-inflammatory and anti-
cancer agents. Bioorg. Med. Chem., 2010, 18(7), 2796-808.
Saeed, A.; Shams-ul-Mahmood, Flörke, U. Synthesis and charac-
terization of new ( E ) -N ’ - ( substituted benzylidene ) -2- ( 3- ( 2-
methyl ) -4-oxo-3 , 4-dihydroquinazolin-2-ylthio ) acetohydrazides.
Turk. J. Chem., 2014. 38(2), 275-87
Gemma, S.; Kukreja, G.; Fattorusso, C.; Persico, M.; Romano, M.
P.; Altarelli, M.; Savini, L.; Campiani, G.; Fattorusso, E.; Basilico,
N.; Taramelli, D.; Yardley, V.; Butini, S. Synthesis of N1-
arylidene-N2-quinolyl- and N2-acrydinylhydrazones as potent an-
timalarial agents active against CQ-resistant P. falciparum strains.
Bioorg. Med. Chem. Lett., 2006, 16(20), 5384-8.
Mohamed, M. S.; Kamel, M. M.; Kassem, E. M. M.; Abotaleb, N.;
Abd El-moez, S. I.; Ahmed, M. F. Novel 6,8-dibromo-
4(3H)quinazolinone derivatives of anti-bacterial and anti-fungal ac-
tivities. Eur. J. Med. Chem., 2010, 45(8), 3311-9.
Ul-haq, Z.; Khan, W.; Kalsoom, S.; Ansari, F. L. In silico modeling
of the specific inhibitory potential of against BChE in the formation
of ꢁ-amyloid plaques associated with Alzheimer ' s disease. Theor.
Biol. Med. Model., 2010, 7, 22-44.
Belluti, A. F.; Bartolini, M.; Bottegoni, G.; Bisi, A.; Cavalli, A.;
Andrisano, V.; Rampa, A. Benzophenone-Based Derivatives: A
Novel Series of Potent and Selective Dual Inhibitors of Acetylcho-
linesterase and Acetylcholinesterase-Induced Beta-Amyloid Ag-
gregation. Eur. J. Med. Chem., 2011, 46(5), 1682-93.
Shinada, M.; Narumi, F.; Osada, Y.; Matsumoto, K.; Yoshida, T.;
Higuchi, K.; Kawasaki, T.; Tanaka, H.; Satoh, M. Synthesis of
phenserine analogues and evaluation of their cholinesterase inhibi-
tory activities. Bioorg. Med. Chem., 2012, 20(16), 4901-14.
Saeed, A.; Mahesar, P. A.; Zaib, S.; Khan, M. S.; Matin, A.; Sha-
hid, M.; Iqbal, J. Synthesis, cytotoxicity and molecular modelling
studies of new phenylcinnamide derivatives as potent inhibitors of
cholinesterases. Eur. J. Med. Chem., 2014, 78, 43-53.
Krsti, D. Z.; Lazarevi, T. D; Bond, A. M.; Vasi, V.M. Acetylcho-
linesterase Inhibitors : Pharmacology and Toxicology. Curr. Neu-
ropharmacol., 2013, 11(3), 315-35
Kolár, D.; Wimmerová, L.; Kádek, R. Acetylcholinesterase and
Butyrylcholinesterase inhibitory activities of Berberis vulgaris.
Phytopharmacol., 2010, 1(1), 7-11.
Houghton, P. J.; Ren, Y.; Howes, M. J. Acetylcholinesterase inhibi-
tors from plants and fungi. Nat Prod. Rep., 2006, 23(2), 181-99.
Jaén, J. C.; Gregor, V. E.; Lee, C.; Davis, R.; Emmerling, M. Ace-
tylcholinesterase inhibition by fused dihydroquinazoline com-
pounds. Bioorg. Med. Chem. Lett., 1996, 6, 737-42.
Mikiciuk-Olasik, E.; Baszczak-Swiatkiewiz, K.; Zurek, E.; Kra-
jewska, U.; Rózalski, M.; Kruszyꢂski, R.; Bartczak, T. J. New de-
rivatives of quinazoline and 1, 2-dihydroquinazoline n3-oxide with
expected antitumor activity. Arch. Pharm., 2004, 337, 239-46.
Dukat, M.; Alix, K.; Worsham, J.; Khatri, S.; Schulte, M. K. 2-
Amino-6-chloro-3,4-dihydroquinazoline: A novel 5-HT3 receptor
antagonist with antidepressant character. Bioorg. Med. Chem. Lett.,
2013, 23, 5945-8.
Lee, Y. S.; Lee, B. H.; Park, S. J.; Kang, S. B.; Rhim, H.; Park, J.
Y.; Lee, J. H.; Jeong, S. W.; Lee, J. Y. 3,4-Dihydroquinazoline de-
rivatives as novel selective T-type Ca2+ channel blockers. Bioorg.
Med. Chem. Lett., 2004, 14(13), 3379-84.
Wang, J. F.; Gong, K.; Wei, D. Q.; Li, Y. X.; Chou, K. C. Molecu-
lar dynamics studies on the interactions of PTP1B with inhibitors:
from the first phosphate-binding site to the second one. Protein
Eng. Des. Sel., 2009, 22(6), 349-55.
[27]
[28]
Mao, B. Collective motion in DNA and its role in drug intercala-
tion. Biopolymers, 1988, 27(11), 1795-1815.
Chou, K. C. Review: Low-frequency collective motion in biomac-
romolecules and its biological functions. Biophys. Chem., 1988,
30(1), 3-48.
[29]
[30]
Saeed, A.; Shams-ul Mahmood, Flörke, U. Synthesis and charac-
terization of new (E)-N'-(substituted benzylidene)-2-(3-(2-methyl)-
4-oxo-3,4-dihydroquinazolin-2-ylthio)acetohydrazides. Turk. J.
Chem., 2014, 38, 275-287.
Erben, F.; Michalik, D.; Feist, H.; Kleeblatt, D.; Hein, M.; Matin,
A.; Iqbal, J.; Langer, P. Synthesis and Antiproliferative Activity of
(Z)-1-Glycosyl-3-(5-oxo-2-thioxoimidazolidin-4-ylidene)indolin-2-
ones and (Z)-3-(2-Glycosylsulfanyl-4-oxo-4,5-dihydro-thiazol-5-
ylidene)indolin-2-ones. RSC Adv., 2014, 4, 10879-10893.
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.;
Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R.
New colorimetric cytotoxicity assay for anticancer-drug screening.
J. Natl. Cancer Inst., 1990, 82(13), 1107-12.
Raza, R.; Matin, A.; Sarwar, S.; Barsukova-Stuckart, M.; Ibrahim,
M.; Kortz, U.; Iqbal, J. Polyoxometalates as Potent and Selective
Inhibitors of Alkaline Phosphatases with Profound Anticancer and
Amoebicidal Activities. Dalton Trans., 2012, 41(47), 14329-36.
Ellman, G. L.; Courtney, K. D.; Andres Jr, V.; Feather-Stone, R.
M. A new and rapid colorimetric determination of acetylcho-
linesterase activity. Biochem. Pharmacol., 1961, 7, 88–95.
Aslam, S.; Zaib, S.; Ahmad, M.; Gardiner, J. M.; Ahmad, A.;
Hameed, A.; Furtmann, N.; Gütschow, M.; Bajorath, J.; Iqbal, J.
Novel structural hybrids of pyrazolobenzothiazines with benzimi-
dazoles as cholinesterase inhibitors. Eur. J. Med. Chem., 2014, 78,
106-117.
Khan, I.; Bakht, S. M.; Ibrar, A.; Abbas, S.; Hameed, S.; White, J.
M.; Rana, U. A.; Khan, S. U.; Zaib, S.; Shahid, M.; Iqbal, J. Explo-
ration of a library of triazolothiadiazole and triazolothiadiazine
compounds as a highly potent and selective family of cholinester-
ase and monoamine oxidase inhibitors: Design, synthesis, X-ray
diffraction analysis and molecular docking studies. RSC Adv.,
2015, 5, 21249-21267.
[8]
[9]
[31]
[32]
[10]
[11]
[12]
[33]
[34]
[13]
[14]
[35]
[36]
[15]
[16]
Nachon, F.; Carletti, E.; Ronco, C.; Trovaslet, M.; Nicolet, Y.;
Jean, L.; Renard, P. Y. Crystal structures of human cholinesterases
in complex with huprine W and tacrine: elements of specificity for
anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase.
Biochem. J., 2013, 453(3), 393-9.
Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R.
K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4:
Automated docking with selective receptor flexibility. J. Comput.
Chem., 2009, 30(16), 2785-2791.
[37]
[38]
[17]
[18]
Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Automatic atom
type and bond type perception in molecular mechanical calcula-
tions. J. Mol. Graph. Model., 2006, 25(2), 247–60.
[19]
[20]
[21]
[22]
[23]
[39]
[40]
[41]
Accelrys Software Inc., Discovery Studio Modeling Environment,
Release 4.0, San Diego, CA: Accelrys Software Inc.; 2013.
Giacobini, E. Cholinesterases: New roles in brain function and in
Alzheimer’s disease. Neurochem. Res., 2003, 28(3-4), 515-522.
Kuhl, D. E.; Koeppe, R. A.; Snyder, S. E.; Minoshima, S.; Frey, K.
A.; Kilbourn, M. R. In vivo butyrylcholinesterase activity is not in-
creased in Alzheimer's disease synapses. Ann. Neurol., 2006, 59(1),
13-20.
Chou, K. C. Review: Structural bioinformatics and its impact to
biomedical science. Curr. Med. Chem., 2004, 11(16), 2105-2134.
Heinrikson, R. L. A Model of the complex between cyclin-
dependent kinase 5 (Cdk5) and the activation domain of neuronal
Cdk5 activator. Biochem. Biophys. Res. Commun., 1999, 259(2),
420-428.
[42]
[43]
[44]
Wei, D. Q.; Zhong, W. Z. Binding mechanism of coronavirus main
proteinase with ligands and its implication to drug design against
SARS. (Erratum: ibid., 2003, Vol. 310, 675). Biochem. Biophys.
Res. Commun., 2003, 308(1), 148-151.
Chou, K. C. Low-frequency resonance and cooperativity of hemo-
globin. Trends Biochem. Sci., 1989, 14(6), 212-213.