C. Schwartz et al. / Tetrahedron 62 (2006) 10747–10752
10751
2. Kula, J. Chem. Health Saf. 1999, 6, 21; Gordon, P. M. Chem.
Eng. News 1990, 68, 2.
3. For an overview of ozonide reduction, see: Kropf, H. Houben–
Weyl Methoden Der Organische Chemie; Kropf, H., Ed.; Georg
Thieme: Stuttgart, 1988; Vol. E13/2, p 1111.
ammonium leaving group blocks heteroozonide formation,
leaving fragmentation as the most favorable option. The suc-
cessful reductions in the presence of morpholine (Table 5)
suggests that either hydroxylamines or nitrones may also
promote a similar fragmentation.35
4. Ozonolysis of electron-poor alkenes in methanolic base results
in the direct formation of methyl esters: Marshall, J. A.;
Garofalo, A. W.; Sedrani, R. C. Synlett 1992, 643.
While the oxidative regeneration of the amine oxide would
seem to offer the possibility of catalytic reactions, the need
to competitively capture the carbonyl oxide sets a realistic
lower threshold on the concentration of reagent. Moreover,
the lower yields of aldehyde obtained for ozonolyses in the
presence of stoichiometric NMM (Table 5) versus NMMO
(Table 6) may reflect not only the competing formation of
ozonide during early stages of the reaction (when amine
oxide concentration is necessarily low) but also the fact
that the ozonolysis of amines furnishes amine oxides in less
than quantitative yields.36 However, regeneration of amine
oxides may hold promise in batch reactions and for regener-
ation of supported reagents.
5. The use of more effective reducing agents such as PPh3
(Griesbaum, K.; Kiesel, G. Chem. Ber. 1989, 122, 145; Clive,
D. L. J.; Postema, M. H. D. J. Chem. Soc., Chem. Commun.
1994, 235); BH3 (Flippin, L. A.; Gallagher, D. W.; Jalali-
Araghi, K. J. Org. Chem. 1989, 54, 1430); LiAlH4
(Greenwood, F. L. J. Org. Chem. 1955, 20, 803); NaBH4
(Witkop, B.; Patrick, J. B. J. Am. Chem. Soc. 1952, 74,
3855); and Mg/MeOH or Zn/HOAc (Dai, P.; Dussault, P. H.;
Trullinger, T. K. J. Org. Chem. 2004, 69, 2851) can lead to
problems with separation of byproducts or functional group
compatibility.
6. Chen, L.; Wiemer, D. F. J. Org. Chem. 2002, 67, 7561;
ꢀ
Lavallee, P.; Bouthillier, G. J. Org. Chem. 1986, 51, 1362,
footnote 27.
Finally, the observed fragmentation of carbonyl oxides could
be the first example of a new class of reactions. The key
structural feature in the amine oxides, a nucleophilic center
weakly bonded to a leaving group, is found in other a-nucleo-
philes, suggesting that a similar fragmentation may be pos-
sible with reagents such as hypohalites and peroxysulfates
(Fig. 6). Along these lines, it is interesting to note that reac-
tion of amine oxides with dioxiranes generates amines and
1O2, presumably via an intermediate peroxyammonium
zwitterion.37
7. Schwartz, C.; Raible, J.; Mott, K.; Dussault, P. H. Org. Lett.
2006, 8, 3199.
8. Criegee, R. Angew. Chem. 1975, 87, 767.
9. Anglada, J. M.; Creheut, R.; Maria Bofill, J. Chem.—Eur. J.
1999, 5, 1809.
10. Bunnelle, W. H. Chem. Rev. 1991, 91, 335.
11. Kuczkowski, R. L. Chem. Soc. Rev. 1992, 21, 79.
12. Yamamoto, Y.; Niki, E.; Kamiya, Y. Bull. Chem. Soc. Jpn.
1982, 55, 2677.
X = NR3+: Proposed (this work)
X = Cl or OSO3-: Adducts from
ClO- or peroxymonosulfate
13. Barton, M.; Ebdon, J. R.; Foster, A. B.; Rimmer, S. J. Org.
Chem. 2004, 69, 6967; Barton, M.; Ebdon, J. R.; Foster,
A. B.; Rimmer, S. Org. Biomol. Chem. 2005, 3, 1323.
14. Murray, R. W. Acc. Chem. Res. 1968, 1, 313.
15. Ando, W.; Miyazaki, H.; Kohmoto, S. Tetrahedron Lett. 1979,
1317.
16. Sawaki, Y.; Kato, H,; Ogata, Y. J. Am. Chem. Soc. 1981, 103,
3832; Adam, W.; Durr, H.; Haas, W.; Lohray, B. Angew.
Chem. 1986, 98, 85; Miura, M.; Nojima, M.; Kusabayashi, S.
J. Chem. Soc., Perkin Trans. 1 1980, 1950.
O-
O
O
X
Figure 6. Alternative fragmentation precursors.
3. Conclusion
The ozonolysis of alkenes in the presence of amine oxides
directly generates aldehydes and ketones through an unprec-
edented mechanism involving nucleophilic trapping of car-
bonyl oxides and fragmentation of the derived zwitterionic
peroxides. The methodology, which avoids formation of
ozonides or related energetic intermediates, offers a safer al-
ternative to traditional ozonolyses and may expand the syn-
thetic applications of an already versatile oxidative cleavage.
17. Sofikiti, N.; Rabalakos, C.; Statakis, M. Tetrahedron Lett.
2004, 45, 1335.
18. Any work involving peroxides should follow standard precau-
tions: Medard, L. A. Accidental Explosions: Types of Explosive
Substances; Ellis Horwood: Chichester, UK, 1989; Vol. 2;
Patnaik, P. A Comprehensive Guide to the Hazardous
Properties of Chemical Substances; Van Nostrand Reinhold:
New York, NY, 1992; Shanley, E. S. Organic Peroxides;
Swern, D., Ed.; Wiley-Interscience: New York, NY, 1970;
Vol. 3, p 341.
19. Based upon 1H NMR of crude reaction mixtures.
20. Schulz, M.; Rieche, A.; Becker, D. Chem. Ber. 1966, 99,
3233.
21. Pokrovskaya, I. E.; Ryzhankova, A. K.; Menyailo, A. T.;
Mishina, L. S. Neftekhimiya 1971, 11, 873.
22. See: Slomp, G., Jr.; Johnson, J. L. J. Am. Chem. Soc. 1958, 80,
915; and, Griesbaum, K. J. Chem. Soc., Chem. Commun. 1966,
920.
Acknowledgements
We are grateful for support from the Petroleum Research
Fund, and for technical assistance from Paul Unverzagt
and Fred Zinnel. We thank Dennis Schilling for pointing
out Ref. 22 (Slomp et al.) NMR spectra were acquired, in
part, on spectrometers purchased with support from NSF
(MRI 0079750 and CHE 0091975). A portion of this re-
search was conducted in facilities remodeled with support
from NIH (RR016544-01).
References and notes
23. Bailey, P. S. Ozonation in Organic Chemistry; Academic: New
York, NY, 1978; Vol. 2; pp 155–201; Maggiolo, A.; Niegowski,
S. J. Ozone Chemistry and Technology; American Chemical
Society: Washington, DC, 1959; pp 202–204.
1. Bailey, P. S. Ozonation in Organic Chemistry; Academic: New
York, NY, 1978; Vol. 1.