E. E. Boros et al. / Bioorg. Med. Chem. Lett. 14 (2004) 3425–3429
3429
James, I. E.; Marquis, R. W.; Ru, Y.; Vasko-Moser, J. A.;
Smith, B. R.; Tomaszek, T.; Gowen, M. J. Bone Miner.
Res. 2001, 16, 1739.
the cathepsin K inhibitor potency, a comparison of
analogs 6l (IC50 ¼ 0.13 nM) and 6q (IC50 ¼ 4.0 nM)
shows that the P3 moiety does contribute to inhibitor
binding interactions. Although the data do not support
the original hypothesis that P3 aryl groups could form
p–p stacking interactions in S3, P3–S3 hydrophobic
interactions do account for additional inhibitory activ-
ity, suggesting that the P3 group of the docked inhibitor
6n needs further refinement.
3. Catalano, J. G.; Deaton, D. N.; Furfine, E. S.; Hassell, A.
M.; McFadyen, R. B.; Miller, A. B.; Miller, L. R.;
Shewchuk, L. M.; Willard, D. H.; Wright, L. L. Bioorg.
Med. Chem. Lett. 2004, 14, 275.
4. Berk, S. C.; Yeh, M. C. P.; Jeong, N.; Knochel, P.
Organometallics 1990, 9, 3053.
5. Vedejs, E.; Wang, J. Org. Lett. 2000, 2, 1031.
6. Lingibe, O.; Graffe, B.; Sacquet, M.-C.; Lhommet, G.
Heterocycles 1994, 37, 1469.
Aldehydes have a reputation for metabolic and chemical
instability.25 Not surprisingly, then, in vitro incubations
with rat S9 liver homogenates revealed that these alde-
hyde inhibitors were rapidly degraded.26 These results
were supported by in vivo experiments in male Han
Wistar rats. After dosing (iv dose ¼ 5 mg/kg or po
dose ¼ 10 mg/kg), the plasma concentration of a P1
derivative of aldehyde 6k fell below the assay detection
limit (<3 ng/mL) after 15 min, indicating rapid elimina-
tion in vivo. The poor pharmacokinetic properties of
this class of aldehyde inhibitors precluded further in
vivo pharmacodynamic studies. In spite of these disap-
pointing, but not unexpected results, the SAR gleaned
from this investigation and structural insight gained
from the cathepsin K/inhibitor co-crystal structure
proved valuable for the design of better inhibitors.
7. Wuts, P. G. M.; Pruitt, L. E. Synthesis 1989, 622.
8. Luly, J. R.; Hsiao, C. N.; BaMaung, N.; Plattner, J. J.
J. Org. Chem. 1988, 53, 6109.
9. Bernardon, C.; Deberly, A. J. Org. Chem. 1982, 47, 463.
10. Newkome, G. R.; Allen, J. W.; Anderson, G. M. J. Chem.
Educ. 1973, 50, 372.
11. Souppe, J.; Danon, L.; Namy, J. L.; Kagan, H. B.
J. Organomet. Chem. 1983, 250, 227.
12. Collins, S.; Hong, Y.; Hoover, G. J.; Veit, J. R. J. Org.
Chem. 1990, 55, 3565.
13. Ferrari, G. Farmaco, Edizione Scientifica 1960, 15, 337.
14. Langhals, H.; Range, G.; Wistuba, E.; Ruechardt, C.
Chem. Ber. 1981, 114, 3813.
15. The alcohol 2v was synthesized from 3-methoxyphenyl-
acetone and methyl magnesium bromide in 82% yield.
16. The alcohol 2z was synthesized from ethyl thiophene-
3-acetate and methyl magnesium bromide in 72% yield.
17. Effenberger, F.; Drauz, K. Angew. Chem. 1979, 91, 504.
18. Jeschkeit, H.; Losse, G.; Neubert, K. Chem. Ber. 1966, 99,
2803.
19. Kubota, M.; Nagase, O.; Yajima, H. Chem. Pharm. Bull.
1981, 29, 1169.
20. Blum, J.; Amer, I.; Zoran, A.; Sasson, Y. Tetrahedron
Lett. 1983, 24, 4139.
21. Waters, M. L. Curr. Opin. Chem. Biol. 2002, 6, 736.
22. Turk, D.; Guncar, G.; Podobnik, M.; Turk, B. Biol. Chem.
1998, 379, 137.
23. Calpeptin derivative 9 was synthesized by a carbodiimide
coupling of the known 4-bromo-benzyloxycarbonylleucine
with amino alcohol 4, followed by a Moffatt oxidation
of the alcohol to provide the desired aldehyde in 78%
yield.
In summary, a series of aldehyde inhibitors of cathepsin
K with varied substituents at the P2 and P3 positions
were synthesized. Starting from aldehyde lead 1, a P3
moiety was introduced into the inhibitor and the P2
substituent was optimized to produce picomolar
cathepsin K inhibitors such as 6g, 6l, and 6s. Analog 6g
was also very selective for inhibiting cathepsin K versus
cathepsins B and L. Information gained from these SAR
studies proved useful in the design of other cathepsin K
inhibitors containing more metabolically stable thiol-
reactive groups. The properties of these inhibitors will
be reported in due course.
24. Lambert, M. H. In Practical Application of Computer-
Aided Drug Design; Charifson, P. S., Ed.; Marcel Dekker:
New York, NY, 1997; p 243.
References and notes
25. Blume, H.; Oelschlaeger, H. Arzneim.-Forsch. 1978, 28,
956.
26. Iwatsubo, T.; Hirota, N.; Ooie, T.; Suzuki, H.; Shimada,
N.; Chiba, K.; Ishizaki, T.; Green, C. E.; Tyson, C. A.;
Sugiyama, Y. Pharmacol. Ther. 1997, 73, 147.
1. Yamashita, D. S.; Dodds, R. A. Curr. Pharm. Des. 2000,
6, 1.
2. Stroup, G. B.; Lark, M. W.; Veber, D. F.; Bhattacharyya,
A.; Blake, S.; Dare, L. C.; Erhard, K. F.; Hoffman, S. J.;