Page 5 of 7
Journal of the American Chemical Society
Notes
ASSOCIATED CONTENT
Supporting Information.
1
2
3
4
5
6
7
8
The authors declare no competing financial interest.
ACKNOWLEDGMENT
The Supporting Information is available free of charge on the
ACS Publications website at DOI: xxxx
This work was supported by funding from the NIH (R01
GM126832 and R35 GM134929). Spectroscopic instrumentation
was supported by a gift from Paul. J. Bender, the NSF (CHE-
1048642), and the NIH (1S10 OD020022-1). Mukunda Mandal
acknowledges a doctoral dissertation fellowship from the
University of Minnesota. The authors thank Dr. Joshua A. Buss
for providing a sample of Gomberg’s dimer and Amelia M.
Wheaton for X-ray crystallographic assistance.
Experimental details with screening results, characterization
data, and NMR spectra (PDF), X-ray crystal structure data for
[(BPhen)CuII(N3)(µ-N3)]2 (CIF), and DFT computational
results, including xyz coordinates for computed structures.
9
AUTHOR INFORMATION
Corresponding Author
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
1. Hartwig, J. F. Catalyst-Controlled Site-Selective Bond
Activation. Acc. Chem. Res. 2017, 50, 549−555.
2. Stang, E. M.; White, M. C. Total Synthesis and Study of 6-
Deoxyerythronolide B by Late-Stage C–H Oxidation. Nat. Chem.
2009, 1, 547−551.
3. Rosen, B. R.; Simke, L. R.; Thuy-Boun, P. S.; Dixon, D. D.; Yu,
J.-Q.; Baran, P. S. C–H Functionalization Logic Enables
Synthesis of (+)-Hongoquercin A and Related Compounds
Angew. Chem., Int. Ed. 2013, 52, 7317−7320.
4. Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S.
W. The Medicinal Chemist’s Toolbox for Late Stage
Functionalization of Drug-Like Molecules. Chem. Soc. Rev.
2016, 45, 546−576.
5. Newhouse, T.; Baran, P. S. If C–H Bonds Could Talk: Selective
C–H Bond Oxidation. Angew. Chem., Int. Ed. 2011, 50, 3362−
3374.
6. Hartwig, J. F.; Larsen, M. A. Undirected, Homogeneous C−H
Bond Functionalization: Challenges and Opportunities. ACS
Cent. Sci. 2016, 2, 281−292.
7. Wang, X.; Huang, B.; Liu, X.; Zhan, P. Discovery of Bioactive
Molecules from CuAAC Click-Chemistry-Based Combinatorial
Libraries. Drug Discov. Today 2016, 21, 118−132.
8. El-Sagheer, A. H.; Brown, T. Click Nucleic Acid Ligation:
Applications in Biology and Nanotechnology. Acc. Chem. Res.
2012, 45, 1258−1267.
16. Goswami, M.; de Bruin, B. Metal-Catalysed Azidation of
Organic Molecules. Eur. J. Org. Chem. 2017, 2017, 1152−1176.
17. Karimov, R. R.; Sharma, A.; Hartwig, J. F. Late Stage Azidation
of Complex Molecules. ACS Cent. Sci. 2016, 2, 715−724.
18. Sharma, A.; Hartwig, J. F. Metal-Catalysed Azidation of Tertiary
C–H Bonds Suitable for Late-Stage Functionalization. Nature
2015, 517, 600−604.
19. Huang, X.; Bergsten, T. M.; Groves, J. T. Manganese-Catalyzed
Late-Stage Aliphatic C–H Azidation. J. Am. Chem. Soc. 2015,
137, 5300−5303.
20. Margrey, K. A.; Czaplyski, W. L.; Nicewicz, D. A.; Alexanian,
E. J. A General Strategy for Aliphatic C–H Functionalization
Enabled by Organic Photoredox Catalysis. J. Am. Chem. Soc.
2018, 140, 4213−4217.
21. Wang, Y.; Li, G.-X.; Yang, G.; He, G.; Chen, G. A Visible-Light-
Promoted Radical Reaction System for Azidation and
Halogenation of Tertiary Aliphatic C–H Bonds. Chem. Sci. 2016,
7, 2679−2683.
22. Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl,
S. S.; Liu, G. Enantioselective Cyanation of Benzylic C–H Bonds
via Copper-Catalyzed Radical Relay. Science 2016, 353,
1014−1018.
23. Hu, H.; Chen, S.-J.; Mandal, M.; Pratik, S. M.; Buss, J. A.; Krska,
S. W.; Cramer, C. J.; Stahl, S. S. Copper-Catalyzed Benzylic C–
H Coupling with Alcohols via Radical Relay Enabled by Redox
Buffering. Nat. Catal. 2020, 3, 358-367.
24. Ni, Z.; Zhang, Q.; Xiong, T.; Zheng, Y.; Li, Y.; Zhang, H.;
Zhang, J.; Liu, Q. Highly Regioselective Copper-Catalyzed
Benzylic C–H Amination by N-Fluorobenzenesulfonimide
Angew. Chem., Int. Ed. 2012, 51, 1244–1247.
25. Zhang, W.; Chen, P.; Liu, G. Copper-Catalyzed Arylation of
Benzylic C–H Bonds with Alkylarenes as the Limiting Reagents.
J. Am. Chem. Soc. 2017, 139, 7709−7712.
9. Pickens, C. J.; Johnson, S. N.; Pressnall, M. M.; Leon, M. A.;
Berkland, C. J. Practical Considerations, Challenges, and
Limitations of Bioconjugation via Azide–Alkyne Cycloaddition.
Bioconjugate Chem. 2018, 29, 686−701.
10. Gololobov, Y. G.; Kasukhin, L. F. Recent Advances in the
Staudinger Reaction. Tetrahedron 1992, 48, 1353−1406.
11. Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic
Azides: An Exploding Diversity of
a Unique Class of
Compounds. Angew. Chem. Int. Ed. 2005, 44, 5188−5240.
12. Padwa, A. Aziridines and Azirines: Monocyclic. In
Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.;
Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K., Eds.; Elsevier
Science: Oxford, 2008; Vol. 1, Chapter 1.01.6.2, pp 50−64.
13. Li, Y.-L.; Combs, A. P.; Bicyclic Heteroarylaminoalkyl Phenyl
Derivatives as PI3K Inhibitors, International Patent
2015191677A1, Dec 17, 2015.
14. Ivanov, K. L.; Villemson, E. V.; Budynina, E. M.; Ivanova, O.
A.; Trushkov, I. V.; Melnikov, M. Y. Ring Opening of Donor-
Acceptor Cyclopropanes with the Azide Ion: A Tool for
Construction of N-Heterocycles. Chem. Eur. J. 2015, 21,
4975−4987.
26. Zhang, W.; Wu, L.; Chen, P.; Liu, G. Enantioselective Arylation
of Benzylic C–H Bonds by Copper-Catalyzed Radical Relay.
Angew. Chem. Int. Ed. 2019, 58, 6425−6429.
27. Xiao, H.; Liu, Z.; Shen, H.; Zhang, B.; Zhu, L.; Li, C. Copper-
Catalyzed Late-Stage Benzylic C(sp3)–H Trifluoromethylation.
Chem 2019, 5, 940−949.
28. Complementary C–H functionalization methods showing high
benzylic site selectivity have been reported recently. See refs. 29
and 30.
29. Clark, J. R.; Feng, K.; Sookezian, A.; White, M. C. Manganese-
Catalysed Benzylic C(sp3)–H Amination for Late-Stage
Functionalization. Nat. Chem. 2018, 10, 583−591.
30. Tanwar, L.; Börgel, J.; Ritter, T. Synthesis of Benzylic Alcohols
by C−H Oxidation. J. Am. Chem. Soc. 2019, 141, 17983−17988.
31. Gomberg, M. An instance of Trivalent Carbon: Triphenylmethyl.
J. Am. Chem. Soc. 1900, 22, 757−771.
15. Kim, M.-S.; Yoo, M.-H.; Rhee, J.-K.; Kim, Y.-J.; Park, S.-J.;
Choi, J.-H.; Sung, S.-Y.; Lim, H.-G.; Cha, D.-W.; Synthetic
Intermediates, Process for Preparing Pyrrolylheptanoic Acid
Derivatives Therefrom. International Patent 2009084827A3, July
9, 2009.
5
ACS Paragon Plus Environment