10.1002/anie.201810187
Angewandte Chemie International Edition
COMMUNICATION
Rev. 2016, 116, 9850; e) K. L. Skubi, T. R. Blum, T. P. Yoon, Chem.
Rev. 2016, 116, 10035; f) N. A. Romero, D. A. Nicewicz, Chem. Rev.
2016, 116, 10075; g) M. Silvi, P. Melchiorre, Nature 2018, 554, 41; For
classic radical methodology: h) Radicals in Organic Synthesis (Eds.: P.
Renaud, M. P. Sibi), Wiley-VCH, Weinheim, 2001; i) Encyclopedia of
Radicals in Chemistry, Biology and Materials, Vols. 1 and 2 (Eds.: C.
Chatgilialoglu, A. Studer), Wiley, Chichester, 2012.
[4]
[5]
V. Balzani, A. Credi, M. Venturi, ChemSusChem 2008, 1, 26.
For reviews, see: a) S. Protti, M. Fagnoni, D. Ravelli, ChemCatChem
2015, 7, 1516; b) L. Capaldo, D. Ravelli, Eur. J. Org. Chem. 2017,
2056;; For selected examples, see: c) J. D. Cuthbertson, D. W. C.
MacMillan, Nature 2015, 519, 74; d) J. L. Jeffrey, J. A. Terrett, D. W C.
MacMillan, Science 2015, 349, 1532; e) M. H. Shaw, V. W. Shurtleff, J.
A. Terrett, J. D. Cuthbertson, D. W. C. MacMillan, Science 2016, 352,
1304; f) G. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles,
Nature 2016, 539, 268; g) J. C. K. Chu, T. Rovis, Nature, 2016, 539,
272; h) D.-F. Chen, J. C. K. Chu, T. Rovis, J. Am. Chem. Soc. 2017,
139, 14897; i) K. A. Margrey, W. L. Czaplyski, D. A. Nicewicz, E. J.
Alexanian, J. Am. Chem. Soc. 2018, 140, 4213. j) H. Tanaka, K. Sakai,
A. Kawamura, K. Oisaki, M. Kanai, Chem. Commun. 2018, 54, 3215; k)
J. Twilton, M. Christensen, D. A. DiRocco, R. T. Ruck, I. W. Davies, D.
W. C. Macmillan, Angew. Chem. Int. Ed. 2018, 57, 5369; l) I. A. Perry,
T. F. Brewer, P. J. Sarver, D. M. Schultz, D. A. DiRocco, D. W. C.
MacMillan, Nature 2018, 560, 70; For catalyst mediated HAT, see: m)
M. Okada, T. Fukuyama, K. Yamada, I. Ryu, D. Ravelli, M. Fagnoni,
Chem. Sci. 2014, 5, 2893; n) X.-Q. Hu, J.-R. Chen, W.-J. Xiao, Angew.
Chem. Int. Ed. 2017, 56, 1960; o) X.-Z. Fan, J.-W. Rong, H.-L. Wu, Q.
Zhou, H.-P. Deng, J. D. Tan, C.-W. Xue, L.-Z. Wu, H.-R. Tao, J. Wu,
Angew. Chem. Int. Ed. 2018, 57, 8514; p) A. Hu, J.-J. Guo, H. Pan, Z.
Zuo, Science 2018, 361, 668.
In summary, the catalytic generation of highly reactive
chlorine atoms using photoredox mediated activation of chloride
has been achieved. The chlorine atoms engaged with a variety
of hydridic CH bonds including alkanes, alcohols, ethers, ester,
amides, aldehydes, and silanes, for the redox-neutral Giese-type
addition of alkyl radicals to activated alkenes. Mechanistic
studies showed a closed catalytic cycle with ethers, the
attenuation of chlorine atoms to be more selective than bromine
atoms with pyridine as the solvent, and that background energy
transfer pathways were at play. These results challenge the
currently accepted information about chlorine atoms and future
studies evaluating these highly reactive intermediates in the
context of synthesis will be reported in due course.
[6]
[7]
[8]
[9]
a) J. Kiwi, M. Gratzel, Chem. Phys. Lett. 1981, 78, 241; b) S. A. M.
Wehlin, L. Troian-Gautier, G. Li, G. J. Meyer, J. Am. Chem. Soc. 2017,
139, 12903.
Photoredox generation of chlorine atom was reported during
preparation of this manuscript: H.-P. Deng, Q. Zhou, J. Wu, Angew.
Chem. Int. Ed. 2018, In Press.
a) D. R. Heitz, J. C. Tellis, G. A. Molander, J. Am. Chem. Soc. 2016,
138, 12715; b) B. J. Shields, A. G. Doyle, J. Am. Chem. Soc. 2016, 138,
12719.
Acknowledgements
We thank the Natural Sciences and Engineering Research
Council (NSERC) for the Discovery grant to L.B. T.M. thanks
NSERC for a Ph.D. scholarship (Alexander Graham Bell CGSD).
S.R. thanks the government of Ontario for an OGS scholarship.
M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal Jr., G.
G. Malliaras, S. Bernhard, Chem. Mater. 2005, 17, 5712.
[10] R. Breslow, M. Brandl, J. Hunger, N. Turro, K. Cassidy, K. Krogh-
Jespersen, J. D. Westbrook, J. Am. Chem. Soc. 1987, 109, 7204.
[11] a) S. K. Pagire, A. Hossain, L. Traub, S. Kerres, O. Reiser, Chem.
Commun. 2017, 53, 12072; b) T. Lei, C. Zhou, M.-Y. Huang, L.-M. Zhao,
B. Yang, C. Ye, H. Xiao, Q-Y. Meng, V. Ramamurthry, C.-H. Tung, L.-Z.
Wu, Angew. Chem. Int. Ed. 2017, 56, 15407.
Keywords: Hydrogen atom transfer • Photoredox catalysis •
Chlorine atom • Alkyl radicals • CH functionalization
[12] G. S. Lee, S. H. Hong, Chem. Sci. 2018, 9, 5810.
[1]
[2]
a) G. A. Russell, H. C. Brown, J. Am. Chem. Soc. 1955, 77, 4031; b) J.
S. Pilgrim, A. McIlroy, C. A. Taatjes, J. Phys. Chem. A 1997, 101, 1972.
a) H. O. Pritchard, J. B. Pyke, A. F. Trotman-Dickenson, J. Am. Chem.
Soc. 1955, 77, 2629; b) G. A. Russell, J. Am. Chem. Soc. 1957, 79,
2977; c) G. A. Russell, J. Am. Chem. Soc. 1958, 80, 4987; d) C.
Walling, M. F. Mayahi, J. Am. Chem. Soc. 1959, 81, 1485; e) E.
Tschuikow-Roux, J. Niedzielski, F. Faraji, Can. J. Chem. 1985, 63,
1093; f) S. Forgeteg, T. Berces, J. Photochem. Photobiol. A: Chem.
1993, 73, 187; g) J. E. Chateauneuf, J. Org. Chem. 1999, 64, 1054.
For recent reviews, see: a) J. M. R. Narayanam, C. R. J. Stephenson,
Chem. Soc. Rev. 2011, 40, 102; b) J. Xuan, W.-J. Xiao, Angew. Chem.
Int. Ed. 2012, 51, 6828; c) C. K. Prier, D. A. Rankic, D. W. C. MacMillan,
Chem. Rev. 2013, 113, 5322; d) D. Ravelli, S. Protti, M. Fagnoni, Chem.
[13] N. Bortolamei, A. A. Isse, A. Gennaro, Electrochim. Acta 2010, 55,
8312.
[14] For examples of silanes, see: a) R. Zhou, Y. Y. Goh, H. Liu, H. Tao, L.
Li, J. Wu, Angew. Chem. Int. Ed. 2017, 56, 16621; b) H. Qrareya, D.
Dondi, D. Ravelli, M. Fagnoni, ChemCatChem 2015, 7, 3350; for
examples of alkanes, see: c) P. S. Skell, H. N. Baxter, J. M. Tanko, V.
Chebolu, J. Am. Chem. Soc. 1986, 108, 6300; d) S. M. Aschmann, R.
Atkinson, Int. J. Chem. Kinet. 1995, 27, 613.
[15] J. Jiang, R. Ramozzi, S. Moteki, A. Usui, K. Maruoka, K. Morokuma, J.
Org. Chem. 2015, 80, 9264.
[3]
This article is protected by copyright. All rights reserved.