A plausible reaction mechanism was revealed and further
studies are underway.
We thank the National Natural Science Foundation of
China (21073208) for financial support.
Notes and references
1 (a) Z. Y. Li, N. P. Young, M. Di Vece, S. Palomba, R. E. Palmer,
A. L. Bleloch, B. C. Curley, R. L. Johnston, J. Jiang and J. Yuan,
Nature, 2008, 451, 46; (b) A. A. Herzing, C. J. Kiely, A. F. Carley,
P. Landon and G. J. Hutchings, Science, 2008, 321, 1331;
(c) M. S. Chen and D. W. Goodman, Science, 2004, 306, 252.
2 (a) A. S. K. Hashmi and G. J. Hutchings, Angew. Chem., Int. Ed.,
2006, 45, 7896; (b) C. Della Pina, E. Falletta, L. Prati and
M. Rossi, Chem. Soc. Rev., 2008, 37, 2077; (c) Y. Zhang, X. Cui,
F. Shi and Y. Deng, Chem. Rev., 2012, 112, 2467.
Scheme 1 Reduction of p-Me nitrobenzene.
Scheme 2 The reduction of imine to N-alkyl aniline by glycerol.
3 (a) A. Villa, A. Gaiassi, I. Rossetti, C. L. Bianchi, K. van Benthem,
G. M. Veith and L. Prati, J. Catal., 2010, 275, 108; (b) Y. H. Shen,
S. H. Zhang, H. J. Li, Y. Ren and H. C. Liu, Chem.–Eur. J., 2010,
16, 7368; (c) A. Villa, G. M. Veith and L. Prati, Angew. Chem., Int.
Ed., 2010, 49, 4499.
4 (a) K. P. C. Vollhardt and N. E. Schore, Organic Chemistry: Structure
and Function, W. H. Freeman, New York, 3rd edn, 1999, pp. 936, and
references therein; (b) S. A. Lawrence, Amines: Synthesis Properties
and Applications, Cambridge University, Cambridge, 2004.
5 (a) D. L. Guo, H. Huang, J. Y. Xu, H. L. Jiang and H. Liu, Org.
Lett., 2008, 10, 4513; (b) W. Huang, Q. S. Shen, J. L. Wang and
X. G. Zhou, J. Org. Chem., 2008, 73, 1586.
6 (a) T. E. Muller, K. C. Hultzsch, M. Yus, F. Foubelo and
M. Tada, Chem. Rev., 2008, 108, 3795; (b) M. Ahmed,
A. M. Seayad, R. Jackstell and M. Beller, J. Am. Chem. Soc.,
2003, 125, 10311; (c) X. Q. Shen and S. L. Buchwald, Angew.
Chem., Int. Ed., 2010, 49, 564; (d) K. D. Hesp, S. Tobisch and
M. Stradiotto, J. Am. Chem. Soc., 2010, 132, 413.
7 (a) L. Blackburn and R. J. K. Taylor, Org. Lett., 2001, 3, 1637;
(b) A. L. Korich and T. S. Hughes, Synlett, 2007, 2602; (c) L. Paquin,
J. Hamelin and F. Texier-Boullet, Synthesis, 2006, 1652.
8 (a) R. W. Layer, Chem. Rev., 1963, 63, 489; (b) M. T. Robak,
M. A. Herbage and J. A. Ellman, Chem. Rev., 2010, 110, 3600;
(c) X. F. Wu, C. Vovard-Le Bray, L. Bechki and C. Darcel,
Tetrahedron, 2009, 65, 7380.
9 (a) G. Guillena, D. J. Ramon and M. Yus, Chem. Rev., 2010,
110, 1611; (b) M. H. S. A. Hamid, P. A. Slatford and J. M.
J. Williams, Adv. Synth. Catal., 2007, 349, 1555; (c) S. Bahn,
S. Imm, L. Neubert, M. Zhang, H. Neumann and M. Beller,
ChemCatChem, 2011, 3, 1853; (d) T. D. Nixon, M. K. Whittlesey
and J. M. J. Williams, Dalton Trans., 2009, 753 and references in
these reviews.
10 (a) T. Ishida, R. Takamura, T. Takei, T. Akita and M. Haruta,
Appl. Catal., A, 2012, 413, 261; (b) K. Shimizu, M. Nishimura and
A. Satsuma, ChemCatChem, 2009, 1, 497; (c) A. Corma,
T. Rodenas and M. J. Sabater, Chem.–Eur. J., 2010, 16, 254;
(d) L. He, X. B. Lou, J. Ni, Y. M. Liu, Y. Cao, H. Y. He and
K. N. Fan, Chem.–Eur. J., 2010, 16, 13965; (e) W. He, L. D. Wang,
C. L. Sun, K. K. Wu, S. B. He, J. P. Chen, P. Wu and Z. K. Yu,
Chem.–Eur. J., 2011, 17, 13308; (f) M. C. Lubinu, L. De Luca,
G. Giacomelli and A. Porcheddu, Chem.–Eur. J., 2011, 17, 82;
(g) K. Yamaguchi, J. L. He, T. Oishi and N. Mizuno, Chem.–Eur.
J., 2010, 16, 7199; (h) J. W. Kim, K. Yamaguchi and N. Mizuno,
J. Catal., 2009, 263, 205; (i) R. Cano, D. J. Ramon and M. Yus,
J. Org. Chem., 2011, 76, 5547; (j) F. Shi, M. K. Tse, S. L. Zhou,
M. M. Pohl, J. Radnik, S. Hubner, K. Jahnisch, A. Bruckner and
M. Beller, J. Am. Chem. Soc., 2009, 131, 1775; (k) X. C. Yu,
C. Z. Liu, L. Jiang and Q. Xu, Org. Lett., 2011, 13, 6184.
11 (a) C. C. Lee and S. T. Liu, Chem. Commun., 2011, 47, 6981;
(b) Q. L. Peng, Y. Zhang, F. Shi and Y. Q. Deng, Chem. Commun.,
2011, 47, 6476; (c) C. H. Tang, L. He, Y. M. Liu, Y. Cao, H. Y. He
and K. N. Fan, Chem.–Eur. J., 2011, 17, 7172; (d) Y. Liu, W. Chen,
C. Feng and G. J. Deng, Chem.–Asian J., 2011, 6, 1142;
(e) C. Feng, Y. Liu, S. M. Peng, Q. Shuai, G. J. Deng and
C. J. Li, Org. Lett., 2010, 12, 4888.
Scheme 3 The plausible mechanism of the synthesis of N-alkyl ani-
line using glycerol as the reducing agent.
The catalyst is easily separated by filtration and its recyclability
was investigated in the coupling reaction of benzyl alcohol and
p-methyl nitrobenzene to synthesize the corresponding imine. To
our delight, the catalytic activity of Au/Ag–Mo-NR remained
almost unchanged after 5 runs and no gold leaching occurred
according to ICP-AES measurement. Furthermore, the filtered
solution did not exhibit any activity under the same reaction
conditions and the gold leached into the filtrate was out of the
detection limit. These findings ruled out the contribution of the
leached gold in the coupling reaction.
The investigation of the reaction mechanism should be
interesting. By tracing the coupling reaction of p-methyl nitro-
benzene and benzyl alcohol with GC-MS, p-methyl aniline was
observed at the initial stage and a certain amount was kept
during the whole process. However, we cannot observe the
oxidation product of glycerol by GC-MS. So, the reaction mixture
was characterized by LC-MS, which suggested the formation of
oxidized glycerol, i.e. glycerosone or glyceraldehydes, Fig. S3
1
(ESIw). According to the H NMR spectra, Fig. S4 (ESIw), the
aldehyde protons of benzaldehye and glyceraldehydes could be
observed. Thus, benzylalcohol and glycerol were all responsible for
the reduction of p-methyl nitrobenzene at the initial stage of the
reaction and the oxidation of glycerol might occur on the terminal
hydroxyl group, Scheme 1. The following step is the formation
of N-benzylidene-4-methylaniline and its further reduction to
N-benzyl-p-methyl aniline by glycerol, Scheme 2. The reaction
mechanism could be clarified as given in Scheme 3.
In summary, we have developed a highly efficient hetero-
geneous catalyst for the tandem reaction of alcohols and
nitrobenzenes to generate N-alkyl amines and imines using
glycerol as the hydrogen source. Good to excellent yields of
N-alkyl amines and imines were achieved under mild condi-
tions with 1 to 1 molar ratio of alcohols and nitrobenzenes.
12 S. Guo, F. Shi, Y. L. Gu, J. Yang and Y. Q. Deng, Chem. Lett.,
2005, 830.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 9391–9393 9393