Lipases Aided Esterification of (2,2-Dimethyl-1,3-dioxolan-4-yl)methanol
Letters in Organic Chemistry, 2014, Vol. 11, No. 1 11
3
3
[2]
[3]
Dmitriev, G. S.; Zanaveskin, L. N. Synthesis of epichlorohydrin
from glycerol. Hydrochlorination of glycerol. Chem. Eng. Trans.,
2011, 24, 43-48.
Bell, B. M.; Briggs, J. R.; Campbell, R. M.; Chambers, S. M.;
Gaarenstroom, P. D.; Hippler, J. G.; Hook, B. D.; Kearns, K.; Ken-
ney; J. M.; Kruper, W. J.; Schreck, D. J.; Theriault, C. N.; Wolfe,
Ch. P. Glycerin as a renewable feedstock for epichlorohydrin pro-
duction. The GTE process. Clean-Soil, Air, Water, 2008, 36, 657-
661.
Zheng, Y.; Chen, X.; Shen, Y. Commodity chemicals derived from
glycerol, an important biorefinery feedstock. Chem. Rev., 2008,
108, 5253-5277.
Jurczak, J.; Pikul, S.; Bauer, T. (R)- and (S)-2,3-O-
isopropylideneglyceraldehyde in stereoselective organic synthesis.
Tetrahedron, 1986, 42, 447-488.
Xia, J.; Hui, Y. Z. The efficient synthesis of mixed diacyl phos-
pholipids with polyunsaturated fatty acid in sn-2 position of glyc-
erol. Tetrahedron: Asymmetry, 1997, 8, 3019-3021.
Lecollinet, G.; Auzely-Velty R.; Danel, M.; Benvegnu, T.;
Mackenzie, G.; Goodby, J. W.; Plusquellec, D. Synthetic ap-
proaches to novel archaeal tetraether glycolipid analogues. J. Org.
Chem., 1999, 64, 3139-3150.
Li Z.; Liu, G. Water-dispersible tetrablock copolymer synthesis,
aggregation, nanotube preparation, and impregnation. Langmuir,
2003, 19, 10480-10486.
Jing, G.; Falguieres, T.; Gruenberg, J.; Prestwich, G. D. Concise
synthesis of ether analogues of lysobisphosphatidic acid. Org. Lett.,
2005, 7, 3837-3840.
Gajewiak, J.; Tsukahara, R.; Fujiwara,Y.; Tigyi, G.; Prestwich, G.
D. Synthesis, pharmacology, and cell biology of sn-2-aminooxy
analogues of lysophosphatidic acid. Org. Lett., 2008, 10, 1111-
1114.
Nelson, W. L.; Burke, T. R. Absolute configuration of glycerol
derivatives. 5. Oxprenolol enantiomers. J. Org. Chem., 1978, 43,
3641-3645.
(sextet, 2H, J=7.5 Hz, CH2), 2.34 (t, 2H, J=7.5 Hz, CH2),
3.74 (dd, 1H, 2J=8.4 Hz, 3J=6.0 Hz, H -5), 4.06-4.08 (m, 2H,
a
H -5, H -6), 4.11-4.16 ( dd, 1H, 2J=11.4 Hz, 3J=4.5 Hz, H -
b
b
a
6), 4.28-4.36 (m, 1H, CH). 13C NMR (CDCl3), ꢀ (ppm):
13.8, 18.5, 25.5, 26.8, 36.1, 64.6, 66.5, 73.8, 109.9, 173.6.
[ꢀ]25D = +4.9 (neat); [ꢀ]25 D = +5.1 (neat) [26].
(R)-Solketal Valerate (4d)
[4]
[5]
[6]
[7]
1
Yield 89%; H NMR (CDCl3), ꢀ (ppm): 0.92 (t, 3H,
3J=7.5 Hz, CH3), 1.36 (quintet, 2H, 3J=7.5 Hz, CH2), 1.37
(s, 3H, CH3), 1.44 (s, 3H, CH3), 1.66 (kwintet, 2H, J=7.5
Hz, CH2), 2.34 (t, 2H, 3J=7.5 Hz, CH2), 3.74 (dd, 1H,
3
2J=8.4 Hz, J=6.3 Hz, H -5), 4.06-4.12 (m, 2H, H -5, H -
a
b
b
2
3
6), 4.17 (dd, 1H, J=11.5 Hz, J=4.6 Hz, H -6), 4.28-4.36
a
(m, 1H, CH). 13C NMR (CDCl3), ꢀ (ppm): 13.6, 22.3,
25.5, 26.8, 27.0, 31.0, 33.9, 70.3, 73.7, 96.2, 109.9,
173.7. [ꢀ]25D = +5.4 (neat); [ꢀ]25 = +5.7 (neat) [26].
D
[8]
Irreversible Esterification of Solketal (General Proce-
dure)
[9]
(R, S)-Solketal (0.95 mmol) was dissolved in anhydrous
diisopropyl ether (4 ml), and appropriate vinyl ester 6a-c
(1.90 mmol) was added followed by addition of enzyme
preparation in amounts 10-40 mg as indicated in (Tables 3
and 4). The resultant suspension was stirred at room tem-
perature. In time intervals samples of volume 80-100 ꢀl were
taken of, diluted with diisopropyl ether to the volume of 800
ꢀl and analysed on GC gas chromatograph system. The
analyses were carried out using the following temperature
program: oven temperature from 35 °C to 90 °C (5 °C/min),
next from 90 °C to 150 °C (12 °C/min), and then held at 150
°C for 5 min. Injector temperature was 200 °C and the detec-
tor 250 °C. Carrier gas was held with a flow rate of 1.2
mL/min. The retention times of the enantiomers of 1,2-O-
isopropylidene glycerol and its esters under these conditions
were: (R)- solketal: 13.80 min, (S)-solketal: 13.90 min, (S)-
solketal acetate: 14.50 min, (R)-solketal acetate: 14.60 min.,
(S)-solketal propionate: 15.80 min., (R)-solketal propionate
15.90 min., (S)-solketal butyrate: 17.50 min, (R)-solketal
butyrate: 17.60 min., (S)-solketal valerate: 20.20 min., (R)-
solketal valerate: 20.30 min.
[10]
[11]
[12]
Danilewicz, J. C.; Kemp, J. E. G. Absolute configuration by
asymmetric synthesis of (+)-1-( 4-acetamidophenoxy)-3-( isopro-
pylamino)-propan-2-o1 (Practolol). J. Med. Chem., 1973, 16, 168-
169.
[13]
Mequanint, K.; Patel, A.; Bezuidenhout, D. Synthesis, swelling
behavior, and biocompatibility of novel physically cross-linked po-
lyurethane-block-poly(glycerol methacrylate) hydrogels. Bio-
macromolecules, 2006, 7, 883-891.
[14]
[15]
[16]
[17]
Bigot,S.; Bricout, H.; Suisse, I.; Mortreux, A.; Castanet, Y. Synthe-
sis and surface properties of glycerol based C8 chain monoethers.
Ind. Eng. Chem. Res., 2011, 50, 9870-9875.
Hirth, G.; Walther, W. Synthèse des (R)- et (S)-O-isopropylidène-
1,2-glycérols. Détermination de la pureté optique. Helv. Chim.
Acta, 1985, 68, 1863-1871.
Thomas, B. N.; Lindemann, Ch. M.; Corcoran,R. C.; Cotant, C. L.;
Kirsch, J. E.; Persichini, P. J. Phosphonate lipid tubules II. J. Am.
Chem. Soc., 2002, 124, 1227-1233.
Jung, M. E.; Shaw, T. J. Total synthesis of (R)-glycerol acetonide
and the antiepileptic and hypotensive drug (-)-ꢁ-amino-ꢀ-
hydroxybutyric acid (GABOB): Use of vitamin C as a chiral star-
ting material. J. Am. Chem. Soc., 1980, 102, 6304-6311.
Lok, M. C.; Ward, J. P.; van Dorg, D. A. The synthesis of chiral
glycerides starting from D- and L-serine. Chem. Phis. Lipids, 1976,
16, 115-122.
CONFLICT OF INTEREST
[18]
[19]
The authors confirm that this article content has no
conflict of interest.
Kriefa, A.; Froidbise, A. Hemisynthesis of methyl pyrethroates
from ꢁ-alkoxy-alkylidene malonates and isopropylidenediphenyl-
sulfurane and isopropylidenetriphenylphosphorane. Tetrahedron,
2004, 60, 7637-7658.
ACKNOWLEDGEMENTS
The research was financially supported by the project
co-financed by the European Union from the European
Regional Development Fund in the framework of the Opera-
tional Program Innovative Economy Task: Biotransforma-
tion for pharmaceutical and cosmetic industry POIG.01.03.
01-00-158/09.
[20]
[21]
Smith, M. B.; March, J. Marche’s Advanced Organic Chemistry,
5th ed.; Wiley & Sons: New York 2001.
Ghanem, A.; Aboul-Enein, H. Y. Lipase-mediated chiral resolution
of racemates in organic solvents. Tetrahedron: Asymmetry., 2004,
15, 3331-3351.
[22]
[23]
[24]
Urdiales, E. G.; Alfonso, I.; Gotor, V. Enantioselective enzymatic
desymmetrizations in organic synthesis. Chem. Rev., 2005, 105,
313-354.
Chen, C-S.; Fujimoto, Y.; Girdaukas, G.; Sih, Ch. J. Quantitative
analyses of biochemical kinetic resolutions of enantiomers. J. Am.
Chem. Soc., 1982, 104, 7294-7299.
REFERENCES
[1]
Meher, L. C.; Sagar, D. V.; Naik, S. N. Technical aspects of bio-
diesel production by transesterification-a review. Renew. Sust. En-
ergy Rev., 2006, 10, 248-268.
Machado, A. C. O.; da Silva, A. A. T.; Borges, C. P.; Simas, A. B.
C.; Freire, D. M.G. Kinetic resolution of (R, S)-1,2-isopropylidene