10.1002/anie.201808598
Angewandte Chemie International Edition
COMMUNICATION
G. Suero, Angew. Chem. Int. Ed. 2017, 56, 1610; c) A. M. del Hoyo, M.
G. Suero, Eur. J. Org. Chem. 2017, 2017, 2122.
that the reaction proceeds via
a radical–polar crossover
mechanism involving reductive termination and subsequent
alkylation of a carbanion intermediate. Given the abundance of
carboxylic acids in sustainable chemical feedstocks, we believe
that this new fragment coupling-based cyclopropanation reaction
provides a valuable, atom-economical methodology for the
expedient preparation of structurally diverse cyclopropanes.
[12] a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012,
492, 234; b) J. Luo, J. Zhang, ACS Catal. 2016, 6, 873.
[13] See supporting information for optimization studies and control reactions.
[14] C. Sandford, V. K. Aggarwal, Chem. Commun. 2017, 53, 5481.
[15] a) P. C. Trippier, C. McGuigan, Med. Chem. Commun. 2010, 1, 183; b)
D. B. Diaz, A. K. Yudin, Nat. Chem. 2017, 9, 731.
[16] M. Ordóñez, C. Cativiela, Tetrahedron: Asymmetry 2007, 18, 3.
[17] N. Guennouni, L. Lhermitte, S. Cochard, B. Carboni, Tetrahedron 1995,
51, 6999.
Acknowledgements
[18] L. J. Johnston, J. C. Scaiano, K. U. Ingold, J. Am. Chem. Soc. 1984, 106,
4877.
We thank EPSRC (EP/I038071/1) and H2020 ERC (670668) for
financial support. We thank Dr. Daniel Pflästerer for preliminary
work.
[19] a) M. A. Casadei, C. Galli, L. Mandolini, J. Am. Chem. Soc. 1984, 106,
1051; b) A. C. Knipe, C. J. M. Stirling, J. Chem. Soc. B 1968, 67.
[20] G. Pratsch, G. L. Lackner, L. E. Overman, J. Org. Chem. 2015, 80, 6025.
[21] Y.-W. Wu, M.-C. Tseng, C.-Y. Lu, H.-H. Chou, Y.-F. Tseng, H.-J. Hsieh,
J. Chin. Chem. Soc. 1999, 46, 861.
Keywords: Photoredox catalysis • cyclopropanes • carboxylic
acids • radical–polar crossover • decarboxylation
[22] N. Bortolamei, A. A. Isse, A. Gennaro, Electrochimica Act. 2010, 55,
8312.
[23] B. A. Sim, D. Griller, D. D. M. Wayner, J. Am. Chem. Soc. 1989, 111,
754.
[1]
For selected reviews, see: a) C. K. Prier, D. A. Rankic, D. W. C.
MacMillan, Chem. Rev. 2013, 113, 5322; b) D. M. Schultz, T. P. Yoon,
Science 2014, 343, 1239176; c) M. H. Shaw, J. Twilton, D. W. C.
MacMillan, J. Org. Chem. 2016, 81, 6898; d) J. J. Douglas, M. J. Sevrin,
C. R. J. Stephenson, Org. Process Res. Dev. 2016, 20, 1134−1147; e)
N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075.
a) T. Courant, G. Masson, J. Org. Chem. 2016, 81, 6945; b) T. Koike, M.
Akita, Chem 2018, 4, 409.
[2]
[3]
For selected examples, see: a) D. H. R. Barton, M. A. Csiba, J. C.
Jaszberenyi, Tetrahedron 1994, 35, 2869; b) J. W. Tucker, J. M. R.
Narayanam, S. W. Krabbe, C. R. J. Stephenson, Org. Lett. 2010, 12,
368; c) C. J. Wallentin, J. D. Nguyen, P. Finkbeiner, C. R. J. Stephenson,
J. Am. Chem. Soc. 2012, 134, 8875; d) P. Xu, J. Xie, Q. Xue, C. Pan, Y.
Cheng, C. Zhu, Chem. Eur. J. 2013, 19, 14039; e) Y. Xu, Z. Wu, J. Jiang,
Z. Ke, C. Zhu, Angew. Chem. Int. Ed. 2017, 56, 4545; Angew. Chem.
2017, 129, 4616; f) J. Fang, Z.-K. Wang, S.-W. Wu, W.-G. Shen, G.-Z.
Ao, F. Liu, Chem. Commun. 2017, 53, 7638.
[4]
For selected examples involving oxidative termination, see: a) Y. Yasu,
T. Koike, M. Akita, Angew. Chem. Int. Ed. 2012, 51, 9567; Angew. Chem.
2012, 124, 9705; b) C.-J. Yao, Q. Sun, N. Rastogi, B. Kꢀnig, ACS Catal.
2015, 5, 2935; c) G. Dagousset, A. Carboni, E. Magnier, G. Masson, Org.
Lett. 2014, 16, 4340; d) A. Carboni, G. Dagousset, E. Magnier, G.
Masson, Synthesis 2015, 47, 2439; e) A. Carboni, G. Dagousset, E.
Magnier, G. Masson, Chem. Commun. 2014, 50, 14197; f) M. Silvi, C.
Sandford, V. K. Aggarwal, J. Am. Chem. Soc. 2017, 139, 5736.
For selected examples involving reductive termination, see: a) K. Okada,
K. Okamoto, N. Morita, K. Okubo, M. Oda, J. Am. Chem. Soc. 1991, 113,
9401; b) P. Kohls, D. Jadhav, G. Pandey, O. Reiser, Org. Lett. 2012, 14,
672; c) Y. Miyake, K. Nakajima, Y. Nishibayashi, J. Am. Chem. Soc. 2012,
134, 3338; d) Y. Yasu, T. Koike, M. Akita, Adv. Synth. Catal. 2012, 354,
3414; e) L. Chu, C. Ohta, Z. Zuo, D. W. C. MacMillan, J. Am. Chem. Soc.
2014, 136, 10886.
[5]
[6]
A single example using CO2 as the electrophilie has been reported: V. R.
Yatham, Y. Shen, R. Martin, Angew. Chem. Int. Ed. 2017, 56, 10915;
Angew. Chem. 2017, 129, 11055.
[7]
[8]
A. Noble, R. S. Mega, D. Pflästerer, E. L. Myers, V. K. Aggarwal, Angew.
Chem. Int. Ed. 2018, 57, 2155; Angew. Chem. 2018, 130, 2177.
For an intramolecular alkylation of α-boryl anions, see: a) K. Hong, X. Liu,
J. P. Morken, J. Am. Chem. Soc. 2014, 136, 10581; For an alternative
approach to cyclopropyl boronic esters, see: b) G. Benoit, A. B. Charette,
J. Am. Chem. Soc. 2017, 139, 1364.
[9]
a) T. T. Talele, J. Med. Chem. 2016, 59, 8712; b) D. Y.-K. Chen, R. H.
Pouwer, J.-A. Richard, Chem. Soc. Rev. 2012, 41, 4631.
[10] J. P. Phelan, S. B. Lang, J. S. Compton, C. B. Kelly, R. Dykstra, O.
Gutierrez, G. A. Molander, J. Am. Chem. Soc. 2018, 140, 8037.
[11] a) Y. Zhang, R. Qian, X. Zheng, Y. Zeng, J. Sun, Y. Chen, A. Ding, H.
Guo, Chem. Commun. 2015, 51, 54; b) A. M. del Hoyo, A. G. Herraiz, M.
This article is protected by copyright. All rights reserved.