Published on Web 06/11/2003
Synthesis, Self-Assembly, and Switching of One-Dimensional
Nanostructures from New Crowded Aromatics
Mark L. Bushey, Thuc-Quyen Nguyen, and Colin Nuckolls*
Contribution from the Department of Chemistry, Columbia UniVersity,
New York, New York 10027
Received February 20, 2003; E-mail: cn37@columbia.edu
Abstract: This study outlines a versatile and expeditious synthesis of the first derivatives of a new class
of benzene that is substituted with both three amide and three alkyne substituents. Sparsely covered
monolayer films, made through spin-casting, reveal one-dimensional nanostructures that can be visualized
with atomic force microscopy. In bulk, synchrotron X-ray diffraction and polarized light microscopy show
that these nanostructured columns assemble further into a two-dimensional liquid crystalline phase. The
birefringence of this phase can be switched by application of an electric field. The half-time for the liquid
crystalline phase to switch is very fast and proportional to the applied voltage.
nonlinear optics.7 Our efforts,8 as well as others’,9 are in
controlling the intermolecular forces that bring the aromatic
Introduction
Discotic liquid crystals1 have a number of useful applications
that are a consequence of stacking aromatic molecules in a face-
to-face geometry including semiconductors,2 ionic conductors,3
light emitting diodes,4 photoconductors,5 electrooptics,6 and
subunits together by using a combination of hydrogen bonds
and π-stacking. This study describes the first experiments on a
new class of hexasubstituted aromatic molecules 1 shown in
Figure 1A. These structures have a central benzene ring with
both amide and alkyne substituents. The three alkynes are
conjugated to the central aromatic ring, meaning substituents
on the alkynes can alter the reduction/oxidation potentials of
the central aromatic ring and provide a path for charge injection
into the stack. Shown below is a general method to synthesize
these new structures and their assembly into columnar super-
structures. Individual one-dimensional superstructures that are
only a few nanometers wide can be visualized with atomic force
microscopy (AFM). In bulk, the columns form a two-
dimensional liquid crystalline phase that can be switched with
the application of an electric field. The rates of this process are
fast and proportional to the applied electric field strength.
(1) For leading references on discotic liquid crystals, see: (a) Guillon, D. Struct.
Bonding 1999, 95, 41-82. (b) Chandrasekhar, S.; Prasad, S.; Krishna, A.
Contemp. Phys. 1999, 40, 237-245. (c) Chandrasekhar, S.; Ranganath, G.
S. Rep. Prog. Phys. 1990, 53, 57-84. (d) Boden, N.; Bushby, R. J.;
Clements, J.; Movaghar, B. J. Mater. Chem. 1999, 9, 2081-2086. (e)
Metallomesogens; Serrano, J. L., Ed.; VCH: New York, 1996. (f) Simon,
J.; Bassoul, P. In Phthalocyanines: Properties and Applications; Leznoff,
C. C., Lever, A. B. P., Eds.; VCH: New York, 1989; Vol. 2, Chapter 6.
(g) Serrette, A. G.; Lai, C. K.; Swager, T. M. Chem. Mater. 1994, 6, 2252-
68.
(2) (a) Boden, N.; Movaghar, B. Handbook of Liquid Crystals; Wiley-VCH:
New York, 1998; Vol. 2B, pp 781-798. (b) Van de Craats, A. M.; Warman,
J. M.; Fechtenkotter, A.; Brand, J. D.; Harbison, M. A.; Mullen, K. AdV.
Mater. 1999, 11, 1469-1472. (c) Chandrasekhar, S.; Prasad, S. K. Contemp.
Phys. 1999, 40, 237-245. (d) Boden, N.; Bushby, R. J.; Clements, J.;
Movaghar, B. J. Mater. Chem. 1999, 9, 2081-2086. (e) Percec, V.; Glodde,
M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Balagurusamy,
V. S. K.; Heiney, P. A.; Schnell, I.; Rapp, A.; Spiess, H.-W.; Hudson, S.
D.; Duan, H. Nature 2002, 419, 384-387.
(3) (a) Percec, V.; Johansson, G.; Heck, J.; Ungar, G.; Batty, S. V. J. Chem.
Soc., Perkin Trans. 1 1993, 1411-1420. (b) Ungar, G.; Batty, S. V.; Percec,
V.; Heck, J.; Johansson, G. AdV. Mater. Opt. Electron. 1994, 4, 303-313.
(c) Simon, J.; Sirlin, C. Pure Appl. Chem. 1989, 61, 1625-1629. (d)
Toupance, T.; Ahsen, V.; Simon, J. J. Chem. Soc., Chem. Commun. 1994,
75. (e) Sielcken, O. E.; van de Kuil, L. A.; Drenth, W.; Schoonman, J.;
Nolte, R. J. M. J. Am. Chem. Soc. 1990, 112, 3086-3093.
(7) (a) Verbiest, T.; Van Elshocht, S.; Karuanen, M.; Hellemans, L.; Snauwaert,
J.; Nuckolls, C.; Katz, T. J.; Persoons, A. Science 1998, 282, 913-915.
(b) Verbiest, T.; Van Elshocht, S.; Persoons, A.; Nuckolls, C.; Phillips, K.
E.; Katz, T. J. Langmuir 2001, 17, 4685-4687.
(8) (a) Bushey, M. L.; Hwang, A.; Stephens, P. W.; Nuckolls, C. J. Am. Chem.
Soc. 2001, 123, 8157-8158. (b) Bushey, M. L.; Hwang, A.; Stephens, P.
W.; Nuckolls, C. Angew. Chem., Int. Ed. 2002, 41, 2828-2831. (c) Nguyen,
T.-Q.; Bushey, M. L.; Brus, L. E.; Nuckolls, C. J. Am. Chem. Soc. 2002,
124, 15051-15054.
(4) Christ, T.; Gluesen, B.; Greiner, A.; Kettner, A.; Sander, R.; Stuempflen,
V.; Tsukruk, V.; Wendorff, J. H. AdV. Mater. 1997, 9, 48-52.
(5) (a) Adam, D.; Schuhmacher, P.; Simmerer, J.; Ha¨nssling, L.; Siemensmeyer,
K.; Etzbach, K. H.; Ringsdorf, H.; Haarer, D. Nature 1994, 371, 141-
143. (b) Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.;
Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119-1122.
(6) (a) Scherowsky, G.; Chen, X. H. J. Mater. Chem. 1995, 5, 417-21. (b)
Scherowsky, G.; Chen, X. H. Liq. Cryst. 1994, 17, 803-810. (c) Kilian,
D.; Knawby, D.; Athanassopoulou, M. A.; Trzaska, S. T.; Swager, T. M.;
Wrobel, S.; Haase, W. Liq. Cryst. 2000, 27, 509-521. (d) Heppke, G.;
Kruerke, D.; Lohning, C.; Lotzsch, D.; Moro, D.; Muller, M.; Sawade, H.
J. Mater. Chem. 2000, 10, 2657-2661. (e) Kruerke, D.; Rudquist, P.;
Lagerwall, S. T.; Sawade, H.; Heppke, G. Ferroelectrics 2000, 243, 207-
220. (f) Nuckolls, C.; Shao, R.; Jang, W.-G.; Clark, N. A.; Walba, D. M.;
Katz, T. J. Chem. Mater. 2002, 14, 773-776. (g) Bock, H.; Helfrich, W.
Liq. Cryst. 1992, 12, 697-703. (h) Bock, H.; Helfrich, W. Liq. Cryst. 1995,
18, 387-399. (i) Bock, H.; Helfrich, W. Liq. Cryst. 1995, 18, 707-713.
(j) Heppke, G.; Kruerke, D.; Muller, M.; Bock, H. Ferroelectrics 1996,
179, 203-209.
(9) Hydrogen bonds used to stabilize π-stacks: (a) Matsunaga, Y.; Miyajima,
N.; Nakayasu, Y.; Sakai, S.; Yonenaga, M. Bull. Chem. Soc. Jpn. 1988,
61, 207-210. (b) Brunsveld, L.; Zhang, H.; Glasbeek, M.; Vekemans, J.
A. J. M.; Meijer, E. W. J. Am. Chem. Soc. 2000, 122, 6175-6182 and
references therein. (c) Yasuda, Y.; Iishi, E.; Inada, H.; Shirota, Y. Chem.
Lett. 1996, 7, 575-576. (d) Lightfoot, M. P.; Mair, F. S.; Pritchard, R. G.;
Warren, J. E. Chem. Commun. 1999, 19, 1945-1946. (e) Ranganathan,
D.; Kurur, S.; Gilardi, R.; Karle, I. L. Biopolymers 2000, 54, 289-295. (f)
Paleos, C. M.; Tsiourvas, D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1696-
1711 and references therein. (g) Brienne, M. J.; Gabard, J.; Lehn, J. M.;
Stibor, I. J. Chem. Soc., Chem. Commun. 1989, 24, 1868-70. (h)
Goldmann, D.; Dietel, R.; Janietz, D.; Schmidt, C.; Wendorff, J. H. Liq.
Cryst. 1998, 24, 407-411. (i) Ungar, G.; Abramic, D.; Percec, V.; Heck,
J. A. Liq. Cryst. 1996, 21, 73-86. (j) Percec, V.; Ahn, C.-H.; Bera, T. K.;
Ungar, G.; Yeardley, D. J. P. Chem.-Eur. J. 1999, 5, 1070-1083. (k)
Malthete, J.; Levelut, A. M.; Liebert, L. AdV. Mater. 1992, 4, 37-41. (l)
Pucci, D.; Veber, M.; Malthete, J. Liq. Cryst. 1996, 21, 153-155.
9
8264
J. AM. CHEM. SOC. 2003, 125, 8264-8269
10.1021/ja034783a CCC: $25.00 © 2003 American Chemical Society