Protonated Benzene
J. Phys. Chem. A, Vol. 108, No. 45, 2004 9937
(13) See also: Kryachko, E. S.; Nguyen, M. T. J. Phys. Chem. A 2001,
105, 153.
(14) Dutuit; O.; Alcaraz, C.; Gerlich, D.; Guyon, P. M.; Hepburn, J.
W.; Metayer-Zeitoun, C.; Ozenne, J. B.; Weng, T. Chem. Phys. 1996, 209,
177.
(15) Franceschi, P.; Thissen, R.; Zˇabka, J.; Roithova´, J.; Herman, Zˇ.;
Dutuit, O. Int. J. Mass Spectrom. 2003, 228, 507.
(16) Schalley, C. A.; Schro¨der, D.; Schwarz, H. Int. J. Mass Spectrom.
Ion Processes 1996, 153, 173.
(17) Busch, K. L.; Glish, G. L.; McLuckey, S. A. Mass Spectrometry/
Mass Spectrometry: Techniques and Applications of Tandem Mass
Spectrometry; VCH: Weinheim, Germany, 1988.
(18) Schro¨der, D.; Oref, I.; Hrusˇa´k, J.; Weiske, T.; Nikitin, E. E.;
Zummack, W.; Schwarz, H. J. Phys. Chem. A 1999, 103, 4609.
(19) In the schemes, we designate only one particular stereoisomer of
the Birch-reduction products for the sake of clarity. In practice, however,
the Birch reaction occurs without a particular diastereoselectivity; see ref
1, p 1010.
(20) According to the photoionization mass spectra acquired in Orsay,
the unlabeled sample of 3 showed an increased content of methyl benzoate,
which we assign to autoxidation during transportation from the Berlin
laboratory where the compounds were prepared.
(21) Kuck, D. Int. J. Mass Spectrom. 2002, 213, 101.
(22) Olah, G. A.; Staral, J. S.; Asencio, G.; Liang, G.; Forsyth, D. A.;
Mateescu, G. A. J. Am. Chem. Soc. 1978, 100, 6299.
(23) Cacace, F.; Crestoni, M. E.; Fornarini, S. J. Am. Chem. Soc. 1992,
114, 6776.
(24) Sumathy, R.; Kryachko, E. S. J. Phys. Chem. A 2002, 106, 510.
(25) In ref 21, the barrier is given with even larger accuracy, 0.35 (
0.01 eV.
validity of the experimental approach. The qualitative trends
observed are fully consistent with a behavior that is typical for
the σ-complex 2. Provided the reasonable assumption holds true
that the precursor compounds used here yield specifically labeled
C6H7-nDn+ ions upon dissociative photoionization near thresh-
old, we can conclude that all H and D atoms in C6H7-nDn+ are
completely equilibrated at ambient temperature. This finding
is fully consistent with a low barrier associated with hydrogen
ring-walk (about 0.35 eV).21 None of the experiments provides
evidence for a delayed hydrogen ring-walk or a structural
memory effect, not to speak of the existence of the π-complex
1.
According to our additional experiments with a sector-field
mass spectrometer, the surprising results of Mason et al. are
likely to be due to the combined action of artifact signals,
isobaric interferences, and metastable ion contributions to the
collisional activation spectra. While we frankly admit that our
capabilities to vary the temperature of the ion source are limited
compared to the equipment used in ref 2, with the present
knowledge it appears that the evidence presented by Mason et
al. in favor of a face-centered π-complex of benzene was in
fact inconclusive.44
From a methodological point of view, the present photoion-
ization experiments demonstrate that the gas-phase titration
method developed for the determination of the barrier of the
keto/enol tautomerization of ionized acetamide32 can also be
applied to fragment ions generated by dissociative photoion-
ization.
(26) For details of the [C2H3O2] system, see: Schro¨der, D.; Semialjac,
M.; Schwarz, H. Eur. J. Mass Spectrom. 2003, 9, 287, and references therein.
(27) Kuck, D.; Bather, W.; Gru¨tzmacher, H.-F. J. Am. Chem. Soc. 1979,
101, 7154.
(28) Kuck, D.; Schneider, J.; Gru¨tzmacher, H.-F. J. Chem. Soc., Perkin
Trans. 2 1985, 689.
(29) Mormann, M.; Kuck, D. Int. J. Mass Spectrom. 2002, 219, 497.
(30) Bock, H. Angew. Chem. 1989, 101, 1659; Angew. Chem., Int. Ed.
Engl. 1989, 28, 1627.
Acknowledgment. Dedicated to Tom Baer on the occasion
of his 65th birthday. Continuous financial support by the
Deutsche Forschungsgemeinschaft, the Fonds der Chemischen
Industrie, and the Gesellschaft von Freunden der Technischen
Universita¨t Berlin is gratefully acknowledged. Further, we thank
Waltraud Zummack for the synthesis of compounds 3-3b and
the staff of LURE for operating the Orsay Super-ACO ring and
general facilities.
(31) For a similar situation in the related C6H6•+ system, see: Baer, T.;
Willett, G. D.; Smith, D.; Phillips, J. S. J. Chem. Phys. 1979, 70, 4076.
(32) Schro¨der, D.; Loos, J.; Schwarz, H.; Thissen, R.; Dutuit, O.;
Mourgues, P.; Audier, H.-E. Angew. Chem. 2002, 114, 2867; Angew. Chem.,
Int. Ed. 2002, 41, 2748.
(33) McAdoo, D. J.; Morton, T. H. Acc. Chem. Res. 1993, 26, 295.
(34) All proton affinities are taken from: Hunter, E. P. L.; Lias, S. G.
J. Phys. Chem. Ref. Data 1998, 27, 413.
(35) For a more detailed discussion of KIEs, see: Derrick, P. J.; Donchi,
K. F. in ComprehensiVe Chemical Kinetics, Vol. 24; Bamford, C. H., Tipper,
C. F. H., Eds.; Elsevier: Amsterdam, 1983; p 53.
References and Notes
(36) To a first approximation, secondary KIEs are neglected.
(37) Note that the spectroscopic studies of gaseous C6H7 ions clearly
reveal structure 2 but cannot address the question of a delayed hydrogen-
(1) Smith, M. B.; March, J. March’s AdVanced Organic Chemistry,
5th ed.; Wiley: New York, 2001.
(2) Mason, R. S.; Williams, C. M.; Anderson, P. D. J. J. Chem. Soc.,
Chem. Commun. 1995, 1027.
(3) Schro¨der, D.; Loos, L.; Semialjac, M.; Weiske, T.; Schwarz, H.;
Ho¨hne, G.; Thissen, R.; Dutuit, O. Int. J. Mass Spectrom. 2002, 214, 155.
(4) Glukhovtsev, M. N.; Pross, A.; Nicolaides, A.; Radom, L. J. Chem.
Soc., Chem. Commun. 1995, 2347.
(5) Chiavarino, B.; Crestoni, M. E.; DePuy, C. H.; Fornarini, S.;
Gareyev, R. J. Phys. Chem. 1996, 100, 16201.
(6) DePuy, C. H.; Gareyev, R.; Fornarini, S. Int. J. Mass Spectrom.
1997, 161, 41.
(7) Bouchoux, G.; Ya´n˜ez, M.; Mo´, O. Int. J. Mass Spectrom. 1999,
185/186/187, 241.
(8) Ascenzi, D.; Bassi, D.; Franceschi, P.; Tosi, P.; Di Stefano, M.;
Rosi, M.; Sgamellotti, A. J. Chem. Phys. 2003, 119, 8366.
(9) See also: Reed, C.; Kim, K.-C.; Stoyanov, E. S.; Stasko, D.; Tham,
F. S.; Mueller, L. J.; Boyd, P. D. W. J. Am. Chem. Soc. 2003, 125, 1796.
(10) Solca, N.; Dopfer, O. Angew. Chem., Int. Ed. 2002, 41, 3628.
(11) Jones, W.; Boissel, P.; Chiavarino, B.; Crestoni, M. E.; Fornarini,
S.; Lemaire, J.; Maitre, P. Angew. Chem., Int. Ed. 2003, 42, 2057.
(12) Solca, N.; Dopfer, O. Chem. Eur. J. 2003, 9, 3154.
+
ring walk.
(38) MS (EI, 70 eV) of 3, m/z (%): 138 (4) [M+], 137 (4) [M+ H],
-
107 (4) [M+ - CH3O], 79 (100) [C6H7+], 78 (45) [C6H6+], 77 (55) [C6H5+],
59 (5) [C2H3O2+], and 51 (8) [C4H3+]. MS (EI, 70 eV) of 3′, m/z (%): 138
(50) [M+], 137 (60) [M+ - H], 107 (35) [M+ - CH3O], 79 (100) [C6H7+],
78 (30) [C6H6+], 77 (95) [C6H5+], 59 (10) [C2H3O2+], and 51 (15) [C4H3+].
(39) Unless mentioned otherwise, all data are taken from the NIST
Standard Reference Database No. 69, March 2003 Release; see: http://
webbook.nist.gov/chemistry/.
(40) See also: Murray, P. T.; Baer, T. Int. J. Mass Spectrom. Ion Phys.
1979, 30, 165.
(41) Normalized to the sum of H• and H2 losses; i.e., xH ) I([M - H]+)/
(I([M - H]+) + I([M - H2]+)).
(42) Boyd, R. K.; Porter, C. J.; Beynon, J. H. Int. J. Mass Spectrom.
Ion Phys. 1982, 44, 199, and references therein.
(43) See also: (a) Schro¨der, D.; Schwarz, H. Int. J. Mass Spectrom.
Ion Processes 1995, 146/147, 183. (b) Mouget, Y.; Bertrand, M. J. Rapid
Commun. Mass Spectrom. 1995, 9, 387.
(44) Maddox, J. Nature 1994, 369, 97.