Published on Web 06/20/2003
Asymmetric Synthesis of (2S,3R)-Capreomycidine and the
Total Synthesis of Capreomycin IB
Duane E. DeMong and Robert M. Williams*
Contribution from the Department of Chemistry, Colorado State UniVersity,
Fort Collins, Colorado 80523
Received March 12, 2003; E-mail: rmw@lamar.colostate.edu
Abstract: A 27 step total synthesis of the tuberculostatic macrocyclic peptide antibiotic capreomycin IB
has been accomplished. The synthesis features the use of an enolate-aldimine condensation between a
chiral glycine aluminum enolate and the benzyl imine of 3-tert-butyldimethylsiloxy-propanal as a means of
preparing the cyclic guanidine amino acid (2S,3R)-capreomycidine. Additionally, a Hofmann rearrangement
was exacted on a late-stage pentapeptide in order to transform an asparagine residue into a diaminopro-
panoic acid residue.
Introduction
The tuberculostatic cyclic peptide antibiotics capreomycins
IA, IB, IIA, and IIB (1a-d) were isolated from Streptomyces
capreolus by Herr and co-workers at Eli Lilly in 1959 (Figure
1).1 An original structural proposal for capreomycin IB made
by Bycroft et al.2 was later corrected by Shiba and co-workers
who completed the first total syntheses of capreomycins IA and
IB.3 The capreomycins all contain two diaminopropanoic acid
residues, the R,â-unsaturated amino acid ureido-dehydroalanine
and the intriguing cyclic guanidino amino acid (2S,3R)-cap-
reomycidine (2). Capreomycins IA and IIA both contain serine
in the cyclic peptide structure (R1 ) OH), while capreomycins
IB and IIB contain alanine (R1 ) H). Additionally, the IA and
IB forms contain a pendant â-lysine (3) group, while the IIA
and IIB forms are devoid of this substituent.
The capreomycins, which have enjoyed clinical utility for
many years, have been the subject of renewed interest recently
due to their effectiveness against multidrug-resistant strains of
Mycobacterium tuberculosis.4 This is of particular importance
to individuals with compromised immune systems who are
especially susceptible to these infections.5 The capreomycins
are thought to have the same mode of action as the structurally
similar peptide antibiotic viomycin (aka tuberactinomycin B).6
It has been proposed that capreomycin inhibits protein biosyn-
thesis in prokaryotes in two ways: (1) inhibition of the trans-
location of peptidyl tRNA and (2) inhibition of the dissociation
Figure 1. Structures of the capreomycins.
of the ribosomal subunits. Various structural analogues of the
capreomycins have been prepared semisynthetically, and some
of these agents have been shown to have broad-spectrum
antimicrobial activity unlike that of capreomycin itself.7
One of the key constituents of the capreomycins and the
related tuberactinomycins is the cyclic guanidine-containing
(6) (a) Tanaka, N.; Igusa, S. J. Antibiot. 1968, 21, 239-240. (b) Yamada, T.;
Teshima, T.; Shiba, T. Antimicrob. Agents Chemother. 1981, 20, 834-
836. (c) Liou, Y.-F.; Tanaka, N. Biochem. Biophys. Res. Commun. 1976,
71, 477-483. (d) Modolell, J.; Va´zquez, D. Eur. J. Biochem. 1977, 81,
491-497. (e) Yamada, T.; Mizugichi, Y.; Nierhaus, K. H.; Wittmann, H.
G. Nature 1978, 275, 460-461. (f) Yamada, T.; Masuda, K.; Mizuguchi,
Y.; Suga, K. Antimicrob. Agents Chemother. 1976, 9, 817-823.
(7) (a) Yamada, T.; Yamanouchi, T.; Ono, Y.; Nagata, A.; Wakamiya, T.;
Teshima, T.; Shiba, T. J. Antibiot. 1983, 36, 1729-1734. (b) Wakamiya,
T.; Shiba, T. J. Antibiot. 1983, 36, 197-199. (c) Dirlam, J. P.; Belton, A.
M.; Birsner, N. C.; Brooks, R. R.; Chang, S.-P.; Chandrasekaran, R. Y.;
Clancy, J.; Cronin, B. J.; Dirlam, B. P.; Finegan, S. M.; Froshauer, S. A.;
Girard, A. E.; Hayashi, S. F.; Howe, R. J.; Kane, J. C.; Kamicker, B. J.;
Kaufman, S. A.; Kolosko, N. L.; LeMay, M. A.; Linde, R. G., II; Lyssikatos,
J. P.; MacLelland, C. P.; Magee, T. V.; Massa, M. A.; Miller, S. A.; Minich,
M. L.; Perry, D. A.; Petitpas, J. W.; Reese, C. P.; Seibel, S. B.; Su, W.-G.;
Sweeney, K. T.; Whipple, D. A.; Yang, B. V. Bioorg. Med. Chem. Lett.
1997, 7, 1139-1144. (d) Lyssikatos, J. P.; Chang, S.-P.; Clancy, J.; Dirlam,
J. P.; Finegan, S. M.; Girard, A. E.; Hayashi, S. F.; Larson, D. P.; Lee, A.
S.; Linde, R. G., II; MacLelland, C. P.; Petitpas, J. W.; Seibel, S. B.; Vu,
C. B. Bioorg. Med. Chem. Lett. 1997, 7, 1145-1148. (e) Linde, R. G., II;
Birsner, N. C.; Chandrasekaran, R. Y.; Clancy, J.; Howe, R. J.; Lyssikatos,
J. P.; MacLelland, C. P.; Magee, T. V.; Petitpas, J. W.; Rainville, J. P.;
Su, W.-G.; Vu, C. B.; Whipple, D. A. Bioorg. Med. Chem. Lett. 1997, 7,
1149-1152.
(1) Herr, E. B.; Haney, M. E.; Pittenger, G. E.; Higgens, C. E. Proc. Ind. Acad.
Sci. 1960, 69, 134.
(2) Bycroft, B. W.; Cameron, D.; Croft, L. R.; Hassanali-Walji, A.; Johnson,
A. W.; Webb, T. Nature 1971, 231, 301-302.
(3) (a) Shiba, T.; Nomoto, S.; Teshima, T.; Wakamiya, T. Tetrahedron Lett.
1976, 17, 3907-3910. (b) Nomoto, S.; Teshima, T.; Wakamiya, T.; Shiba,
T. J. Antibiot. 1977, 30, 955-959. (c) Nomoto, S.; Teshima, T.; Wakamiya,
T.; Shiba, T. Tetrahedron 1978, 34, 921-927.
(4) (a) Rastogi, N.; Labrousse, V.; Seng Goh, K. Curr. Microbiol. 1996, 33,
167-175. (b) Heifets, L.; Lindholm-Levy, P. Antimicrob. Agents Chemo-
ther. 1989, 33, 1298-1301. (c) Heifets, L. Antimicrob. Agents Chemother.
1988, 32, 1131-1136.
(5) Bloch, A. B.; Cauthen, G. M.; Onorato, I. M.; Kenneth, G.; Dansbury, G.;
Kelly, G. D.; Driver, C. R.; Snider, D. E. JAMA, J. Am. Med. Assoc. 1994,
271, 665-671.
9
10.1021/ja0351241 CCC: $25.00 © 2003 American Chemical Society
J. AM. CHEM. SOC. 2003, 125, 8561-8565
8561