Journal of the American Chemical Society
Communication
Notes
such an adduct is also consistent with the non-integer kinetic
order measured for Selectfluor (1.4). The specific mode of
interaction between the palladium catalyst and Selectfluor is
unclear at this point, but is likely critical to the success of the
fluorination reaction; we speculate that the fluxional binding of
terpyridine in 5 is important to the observed reactivity (see
Supporting Information).
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank J. R. Brandt for helpful discussions and assistance with
binding constant analysis, C. N. Neumann for performing 18F
experiments, NIH-NIGMS (GM088237) and NSF (CHE-
0952753) for funding, the NSF for a graduate fellowship for
A.R.M., and the DOE SCGF for a graduate fellowship for M.G.C.
The observation of turnover-limiting oxidation during
catalysis prevents us from studying the C−F bond-forming
step via kinetic analysis. We postulate that C−F bond formation
occurs via one of two pathways after initial oxidation of 5 by
Selectfluor: (1) direct F• transfer to the aryl trifluoroborate or (2)
SET from the aryl trifluoroborate to the Selectfluor radical cation,
to afford a radical cation, followed by nucleophilic attack of
fluoride. In both cases, one-electron oxidation of the resulting
radical by Pd(III) 2, as shown in Scheme 2, would afford product
and regenerate Pd(II) 5. We carried out an isotopic labeling
experiment to distinguish between the two pathways, in which
the fluorination reaction was performed in the presence of
exogenous [18F]fluoride. Aryl fluoride formation proceeded in
72% yield, but no incorporation of the 18F label was observed
(Scheme 3). While the SET/fluoride attack pathway via a tight
solvent cage mechanism cannot be rigorously excluded, the
absence of 18F incorporation suggests the F• transfer pathway for
C−F bond formation.
In previously reported metal-mediated or -catalyzed arene
fluorination reactions, including our group’s palladium- and
silver-mediated fluorination of arylboronic acids, carbon−
fluorine bond formation is proposed to occur via reductive
elimination from an aryl−metal fluoride complex.11 The
palladium-catalyzed fluorination reaction presented here is
unusual in that it seems to proceed without the formation of
organopalladium intermediates, yet provides high levels of
selectivity.
In conclusion, we have reported the first metal-catalyzed
fluorination of arylboronic acid derivatives. The reaction
proceeds under mild conditions, is tolerant toward moisture
and air, and is amenable to multigram-scale synthesis of
functionalized aryl fluorides. We propose a single-electron-
transfer mechanism involving a well-defined Pd(III) intermedi-
ate. This reaction provides a level of practicality and operational
simplicity not previously achieved by metal-catalyzed or
-mediated arene fluorination reactions, and does not generally
afford side products from protodemetalation, a common
problem for the synthesis of aryl fluorides. Drawbacks of the
reaction include the inability to fluorinate heterocycles and the
formation of constitutional isomers for some electron-poor
substrates.
REFERENCES
■
(1) (a) Brown, J. M.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48,
8610. (b) Furuya, T.; Klein, J. E. M. N.; Ritter, T. Synthesis 2010, 2010,
1804. (c) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
(d) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013,
52, 8214.
(2) (a) Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; Garcia-
Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009, 325, 1661.
(b) Noel, T.; Maimone, T. J.; Buchwald, S. L. Angew. Chem., Int. Ed.
̈
2011, 50, 8900. (c) Maimone, T. J.; Milner, P. J.; Kinzel, T.; Zhang, Y.;
Takase, M. K.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 18106.
(3) Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 12150.
(4) (a) Liu, W.; Huang, X.; Cheng, M. J.; Nielsen, R. J.; Goddard, W.
A.; Groves, J. T. Science 2012, 337, 1322. (b) Hull, K. L.; Anani, W. Q.;
Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 7134. (c) McMurtrey, K. B.;
Racowski, J. M.; Sanford, M. S. Org. Lett. 2012, 14, 4094. (d) Wang, X.;
Mei, T. S.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 7520. (e) Chan, K. S. L;
Wasa, M.; Wang, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2011, 50, 9081.
(5) (a) Tang, P.; Wang, W.; Ritter, T. J. Am. Chem. Soc. 2011, 133,
11482. (b) Sladojevich, F.; Arlow, S. I.; Tang, P.; Ritter, T. J. Am. Chem.
Soc. 2013, 135, 2470.
(6) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 10795.
(7) (a) Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131,
1662. (b) Furuya, T.; Ritter, T. Org. Lett. 2009, 11, 2860. (c) Tang, P.;
Ritter, T. Tetrahedron 2011, 67, 4449.
(8) (a) Furuya, T.; Kaiser, H. M.; Ritter, T. Angew. Chem., Int. Ed. 2008,
47, 5993. (b) Fier, P. S.; Luo, J.; Hartwig, J. F. J. Am. Chem. Soc. 2013,
135, 2552. (c) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2013, 135, 4648.
(9) For recent reviews of Pd(III) complexes: (a) Powers, D. C.; Ritter,
T. Top. Organomet. Chem. 2011, 503, 129. (b) Mirica, L. M.;
Khusnutdinova, J. R. Coord. Chem. Rev. 2012, 257, 299. For references
describing mononuclear Pd(III) complexes: (c) Lanci, M. P.; Remy, M.
S.; Kaminsky, W.; Mayer, J. M.; Sanford, M. S. J. Am. Chem. Soc. 2009,
131, 15618. (d) Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M. J. Am.
Chem. Soc. 2012, 134, 2414. For references describing dinuclear Pd(III)
complexes: (e) Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302.
(f) Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am.
Chem. Soc. 2009, 131, 17050. (g) Powers, D. C.; Benitez, D.; Tkatchouk,
E.; Goddard, W. A., III; Ritter, T. J. Am. Chem. Soc. 2010, 132, 14092.
(h) Powers, D. C.; Xiao, D. Y.; Geibel, M. A. L.; Ritter, T. J. Am. Chem.
Soc. 2010, 132, 14530. (i) Chuang, G. J.; Wang, W.; Lee, E.; Ritter, T. J.
Am. Chem. Soc. 2011, 133, 1760. (j) Campbell, M. G.; Powers, D. C.;
Raynaud, J.; Graham, M. J.; Xie, P.; Lee, E.; Ritter, T. Nat. Chem. 2011, 3,
949. (k) Powers, D. C.; Lee, E.; Ariafard, A.; Sanford, M. S.; Yates, B. F.;
Canty, A. J.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 12002. (l) Powers, D.
C.; Ritter, T. Acc. Chem. Res. 2012, 45, 840.
ASSOCIATED CONTENT
■
S
* Supporting Information
Detailed experimental procedures, spectroscopic data for all new
compounds, details of DFT calculations, and crystallographic
data for 1, 2, S1, and S2 (CIF). This material is available free of
(10) (a) Serguchev, Y. A.; Ponomarenko, M. V.; Lourie, L. F.; Fokin, A.
A. J. Phys. Org. Chem. 2010, 24, 407. (b) Nesterenko, A. M.;
Ponomarenko, M. V.; Lur’e, L. F.; Serguchev, Y. A. Theor. Exp. Chem.
2002, 38, 156. (c) Zhang, X.; Wang, H.; Guo, Y. Rapid Commun. Mass
Spectrom. 2006, 20, 1877. (d) Zhang, X.; Liao, Y.; Qian, R.; Wang, H.;
́
Guo, Y. Org. Lett. 2005, 7, 3877. (e) Nyffeler, P. T.; Duron, S. G.;
AUTHOR INFORMATION
Burkart, M. D.; Vincent, S. P. P.; Wong, C.-H. Angew. Chem., Int. Ed.
2005, 44, 192.
■
Corresponding Author
(11) (a) Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2008, 130, 10060.
(b) Furuya, T.; Benitez, D.; Tkatchouk, E.; Strom, A. E.; Tang, P.;
Goddard, W. A., III; Ritter, T. J. Am. Chem. Soc. 2010, 132, 3793.
Author Contributions
‡A.R.M. and M.G.C. contributed equally.
D
dx.doi.org/10.1021/ja405919z | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX