1766
P. A. Wender, R. Jeon / Bioorg. Med. Chem. Lett. 13 (2003) 1763–1766
construct histograms for the DNA cleavage observed.
The histograms shown in Figure 5 clearly show that
40-bromoactophenone derivative and 40-bromo-20-fluoro-
acetophenone derivative produce the similar cleavage
sites and patterns leading to the cleavage within and
adjacent to sites of multiple contiguous AT base pairs.
On the other hand, 20-bomo-40-fluoroacetophenone
derivative seemed to lose the selectivity although the
affinity to AT base sequence still remained at the
applied concentration. It is supposed that the higher
reactivity of the phenyl radical species from the
20-bromo-40-fluoroacetophenone derivative led to the
higher reactivity for the cleavage of DNA with decreas-
ing selectivity. The cleavage assay and sequencing of the
tested compounds showed prominent correlation
between reactivity of the phenyl radical and DNA
cleaving activities with the highest activity of 20-bromo-
40-fluoroacetophenone derivative.
in DNA Sequence Specific Agents; Hurley, L. H., Ed. JAI:
London, 1992; Vol. 1, p 217. (b) Fukuhara, K.; Miyata, N.
Bioorg. Med. Chem. Lett. 1998, 8, 3187. (c) Roelfes, G.; Bra-
num, M. E.; Wang, L.; Que, L., Jr.; Feringa, B. L. J. Am.
Chem. Soc. 2000, 122, 11517. (d) Breydo, L.; Gates, K. S.
Bioorg. Med. Chem. Lett. 2000, 10, 885. (e) Warner, P. M.; Qi,
J.; Meng, B.; Li, G.; Xie, L.; El-Shafey, A.; Jones, G. B.
Bioorg. Med. Chem. Lett. 2002, 12, 1.
2. (a) Enediyne Antibiotics As Antitumor Agents; Border, D.
B.; Doyle, T. W., Eds. Marcel Dekker: New York, 1995. (b)
Smith, A. L.; Nicolaou, K. C. J. Med. Chem. 1996, 39, 2103.
(c) Kerwin, S. M.; David, W. M.; Kumar, D. PCT Int., WO
0170217, 2001. (d) Suzuki, I.; Tsuchiya, Y.; Shigenaga, A.;
Nemoto, H.; Shibuya, M. Tetrahedron Lett. 2002, 43, 6779.
3. (a) Chen, T.; Voelk, E.; Platz, M. S.; Goodrich, R. P.
Photochem. Photobiol. 1996, 64, 622. (b) Theodorakis, E. A.;
Xiang, X.; Lee, M.; Gibson, T. Tetrahedron Lett. 1998, 39,
3383. (c) Mohler, D. L.; Dain, D. R.; Kerekes, A. D.; Nadler,
W. R.; Scott, T. L. Bioorg. Med. Chem. Lett. 1998, 8, 871. (d)
Toshima, K.; Takano, R.; Maeda, Y.; Suzuki, M.; Asai, A.;
Matsumura, S. Angew. Chem. Int. Ed. 1999, 38, 3733. (e)
Manfredini, S.; Beatrice Vicentini, C.; Manfrini, M.; Bianchi,
N.; Rutigliano, C.; Mischiati, C.; Gambari, R. Bioorg. Med.
Chem. Lett. 2000, 8, 2343.
4. (a) Wender, P. A.; Touami, S. M.; Alayrac, C.; Philipp,
U. C. J. Am. Chem. Soc. 1996, 118, 6522. (b) Touami, S. M.;
Poon, C. C.; Wender, P. A. J. Am. Chem. Soc. 1997, 119,
7611. (c) Wender, P. A.; Jeon, R. Org. Lett. 1999, 1, 2117.
5. (a) Dolbier, W. R., Jr. Chem. Rev. 1996, 96, 1557. (b) Li,
R.; Smith, R. L.; Kenttamaa, H. J. Am. Chem. Soc. 1996, 118,
5056. (c) Shtarev, A. B.; Tian, F.; Dolbier, W. R., Jr.; Smart,
B . E.J. Am. Chem. Soc. 1999, 121, 7335.
6. (a) Nakatani, K.; Shirai, J.; Sando, S.; Saito, I. J. Am.
Chem. Soc. 1997, 119, 7626. (b) Minnock, A.; Lin, L.-S.;
Morgan, J.; Crow, S. D. G.; Waring, M. J.; Sheh, L. Bio-
conjugate Chem. 2001, 12, 870. (c) Arimondo, P. B.; Boutor-
ine, A.; Baldeyrou, B.; Bailly, C.; Kuwahara, M.; Hecht, S. M.;
Sun, J.-S.; Garestier, T.; Helene, C. J. Biol. Chem. 2002, 277,
3132. (d) Weyermann, P.; Dervan, P. B. J. Am. Chem. Soc.
2002, 124, 6872.
In summary, 40-bromo-20-fluoroacetophenone and
20-bromo-40-fluoroacetophenone derivatives upon irra-
diation can function as DNA cleaving agents putatively
through the generation and reaction of phenyl radicals.
20-Bromo-40-fluoroacetophenones revealed higher DNA
cleaving activity than 40-bromo-20-fluoroacetophenone
derivatives supposedly induced by the higher reactivity of
the phenyl radical generated from 20-bromo-40-fluoro-
acetophenones. The attachment of a minor groove
binding moiety to bromofluoroacetophenone results in
increased strand scission of DNA mainly in sequence
selective manner. This work provides a new class of
DNA cleaving agents that are easy to prepare and verify.
Acknowledgements
This work was supported by Korea Research Founda-
tion Grant (KRF- 2001-003-F00235) and the National
Institutes of Health (Grant CA31845). We thank Dr. S.
Touami for assistance with the sequencing experiments.
7. (a) Matsumoto, T.; Toyooka, K.; Nishiwaki, E.; Shibuya,
M. Heterocycles 1990, 31, 1629. (b) Semmelhack, M. F.; Gal-
lagher, J. J.; Ding, W. D.; Krishnamurthy, G.; Babine, R.;
Ellestad, G. A. J. Org. Chem. 1994, 59, 4357. (c) Hurley, A. L.;
Maddox, M. P., III; Scott, T. L.; Flood, M. R.; Mohler, D. L.
Org. Lett. 2001, 3, 2761.
8. Nishiwaki, E.; Tanaka, S.; Lee, H.; Shibuya, M. Hetero-
cycles 1988, 27, 1945.
References and Notes
9. Pichersky, E. Methods in Molecular Biology 23. In DNA
Sequencing Protocols. Griffin, H. G., Griffin, A. M. Eds.;
Humana: Totowa, NJ, 1993; Chapter 31.
1. (a) Nucleic Acid Targeted Drug Design; Propst, C. L.,
Perun, T. J., Eds. Marcel Dekker: New York, 1992. Advances