S. J. Song et al. / Tetrahedron Letters 44 (2003) 255–257
257
References
1. (a) Burkhaller, J. H.; Edgerton, W. H. J. Am. Chem. Soc.
1951, 73, 4837; (b) Ibrahim, A.; Rahman, A.; Abdu, E.;
Etity, B. A. Collect Czech. Chem. Commun. 1991, 56,
1749; (c) Kidwai, M.; Bhushan, K. R.; Sapra, P.; Saxena,
R. K.; Gupta, R. Bioorg. Med. Chem. Lett. 1998, 8, 139.
2. (a) Stille, J. K. Macromolecules 1981, 14, 870; (b)
Agrawal, A. K.; Jenekhe, S. A. Macromolecules 1991, 24,
6806; (c) Agrawal, A. K.; Jenekhe, S. A. Chem. Mater.
1992, 4, 95; (d) Agrawal, A. K.; Jenekhe, S. A. Macro-
molecules 1993, 26, 895; (e) Agrawal, A. K.; Jenekhe, S.
A. Chem. Mater. 1993, 5, 633; (f) Jenekhe, S. A.; Lu, L.;
Alam, M. M. Macromolecules 2001, 34, 7315; (g)
Agrawal, A. K.; Jenekhe, S. A.; Vanherzeele, H.; Meth, J.
S. J. Phys. Chem. 1992, 96, 2837.
3. (a) Jegou, G.; Jenekhe, S. A. Macromolecules 2001, 34,
7926; (b) Lu, L.; Jenekhe, S. A. Macromolecules 2001, 34,
6249; (c) Agrawal, A. K.; Jenekhe, S. A. Chem. Mater.
1996, 8, 579; (d) Jenekhe, S. A.; Zhang, X.; Chen, X. L.;
Choong, V. E.; Gao, Y.; Hsieh, B. R. Chem. Mater. 1997,
9, 409; (e) Zhang, X.; Shetty, A. S.; Jenekhe, S. A.
Macromolecules 1999, 32, 7422; (f) Zhang, X.; Shetty, A.
S.; Jenekhe, S. A. Macromolecules 2000, 33, 2069.
4. (a) Jenekhe, S. A.; Chen, X. L. Science 1998, 279, 1903;
(b) Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372.
5. (a) Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.;
Jacquault, P.; Mathe, D. Synthesis 1998, 1213; (b) Per-
reux, L.; Loupy, A. Tetrahedron 2001, 57, 9199; (c)
Lindstroem, P.; Tierney, J.; Wathey, B.; Westman, J.
Tetrahedron 2001, 57, 9225; (d) Varma, R. S. Green
Chem. 1999, 43; (e) Loupy, A.; Petit, A.; Hamelin, J.;
Texier-Boullet, F.; Jacquault, P.; Mathe, D. Synthesis
1998, 1213; (f) Elander, N.; Jones, J. R.; Lu, S.-Y.;
Stone-Elander, S. Chem. Soc. Rev. 2000, 29, 239; (g) Lew,
A.; Krutzik, P. O.; Hart, M. E.; Chamberlin, A. R. J.
Comb. Chem. 2002, 4, 95; (h) Stadler, A.; Kappe, C. O. J.
Comb. Chem. 2001, 3, 624.
To investigate further the scope and limitations of the
above optimal condition, a minilibrary of quinoline
derivatives was synthesized. Long chain alkyl, bromo,
and amino substituted acetophenones with 2-amino
aceto- or benzophenones were subjected to the above
optimal reaction conditions. The results are summa-
rized in Table 3. It is noteworthy that under the same
reaction conditions, bromo (Table 3, entries 7–9) or
basic amino (Table 3, entries 10 and 11) functionality
remained intact and aqueous work-up was not
required.3
In summary, microwave-assisted solvent-free (under
conditions of so-called ‘Green Chemistry’) reactions
were employed to synthesize quinoline derivatives. The
method not only offers substantial improvement in
yield over conventional heating methods but also elimi-
nates the use of hazardous solvents and excess expen-
sive acidic catalyst. Advantages of this method include
the fact that it is environmentally benign, an economi-
cal procedure, has a short reaction time and the sim-
plicity of the performance with non-aqueous work-up.
Typical microwave procedure for 2,4-diphenylquinoline
(Table 3, entry 1). Acetophenone (0.36, 3.0 mmol),
2-aminobenzophenone (0.59 g, 3.0 mmol) and 0.5
equiv. of DPP (0.38 g, 1.50 mmol, purchased from
Aldrich) were mixed in the absence of any organic
solvent and then submitted for 4 min to microwave
irradiation inside a domestic microwave oven (Sam
Sung, RE-555 TCW). After the reaction, the product
was purified by column chromatography (20% ethyl
acetate/80% hexane, v/v, Rf=0.64) to give 2,4-
diphenylquinoline (0.66 g, 2.34 mmol, 78%) as a color-
less solid. mp=112–113°C (lit.10=112°C).
6. (a) Kim, J. K.; Kwon, P. S.; Kwon, T. W.; Chung, S. K.;
Lee, J. W. Synth. Commun. 1996, 26, 535; (b) Kim, S. Y.;
Kwon, P. S.; Kwon, T. W.; Chung, S. K.; Chang, Y. T.
Synth. Commun. 1997, 27, 533; (c) Kwon, P. S.; Kim, Y.
S.; Kang, C. J.; Kwon, T. W.; Chung, S. K.; Chang, Y.
T. Synth. Commun. 1997, 27, 4091.
Acknowledgements
7. (a) Cheng, C.-C.; Yan, S.-J. Org. React. 1982, 28, 37; (b)
Thummel, R. P. Synlett 1992, 1.
8. Gedye, R. N.; Smith, F. E.; Westaway, K. C. Can. J.
Chem. 1998, 66, 17.
9. (a) Loupy, A.; Perreux, L.; Liagre, M.; Burle, K.;
Moneuse, M. Pure Appl. Chem. 2001, 73, 161; (b) Per-
reux, L.; Loupy, A. Tetrahedron 2001, 57, 9199.
This work was supported by grant from the Basic
Research Program of the Korea Science and Engineer-
ing Foundation (KOSEF R01-2000-000-00039-0).
Work at the University of Washington was supported
by the US Office of Naval Research. We thank Profes-
sor Andre´ Loupy (Universite´ Paris-Sud, France) and
Dr. X. X. Kong (the University of Washington, USA)
for helpful discussion.
10. Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1964, 3, 804.