Tetrahedron Letters
5
14. a) Katritzky, A. R.; Abo-Dya, N. E.; Abdelmajeid, A.; Tala,
S. R.; Amine, M. S.; El-Feky, S. A. Org. Biomol. Chem.
2011, 9, 596–599; b) Wehner, J. W.; Lindhorst, T. K.
Beilstein J. Org. Chem. 2012, 8, 2149–2155.
References
1. a) Ikan, R. Ed. Naturally occuring glycosides; Wiley, 1999;
b) Kren, V.; Martinkova, L. Curr. Med. Chem. 2001, 8, 1303–
1328; c) Weymouth-Wilson, A. C. Nat. Prod. Rep. 1997, 14,
99–110.
2. Faul, M. M.; Huff, B. E. Chem. Rev. 2000, 100, 2407–2473.
3. Aho, J. A.; Pihko, P. M.; Rissa, T. K. Chem. Rev. 2005, 105,
4406–4440.
4. Kocienski, P. J. Protecting groups, 3rd ed.; G. Thieme:
Stuttgart. New York, 2004. Greene, T. W.; Wuts, P. G. M.
Protective groups in Organic Synthesis, 4th ed.: J. Wiley &
Sons: New York, 2007.
5. a) Nicolaou, K. C.; Sorensen, E. Classics in Total Synthesis,
Wiley-VCH: Weinheim, 1996; b) Nicolaou, K. C.; Snyder, S.
A. Classics in Total Synthesis II, Wiley-VCH: Weinheim,
2003; c) Nicolaou, K. C.; Chen, J. S. Classics in Total
Synthesis III, Wiley-VCH: Weinheim, 2011.
6. Hong, X.; McGiveron, O.; Kolah, A. K.; Orjuela, A.;
Peereboom, L.; Lira, C. T.; Miller, D. J. Chem. Eng. J. 2013,
222, 374–381 and references therein.
7. Perron, F.; Albizati, K. M. Chem. Rev. 1989, 89, 1617–1661.
8. Martel, A.; Chewchanwuttiwong, S.; Dujardin, G.; Brown, E.
Tetrahedron Lett. 2003, 44, 1491–1494.
9. a) Suzuki, T.; Kobayashi, K.; Nada, K.; Oriyama, T Synth.
Commun. 2001, 31, 2761–2766; b) Norsikian, S. ; Holmes,
I. ; Lagasse, F. ; Kagan, H. Tetrahedron Lett. 2002, 43, 5715–
5717; c) Iimura, S.; Manabe, K.; Kobayashi, S. J. Org. Chem.
2003, 68, 8723–8725; d) Poisson, T.; Dalla, V.; Papamicael,
C.; Dupas, G.; Marsais, F.; Levacher, V. Synlett 2007, 381–
386.
10. a) Ganem, B. ; Small, V. R. J. Org. Chem. 1974, 39, 3728–
3730; b) Oriyama, T.; Oda, M.; Gono, J.; Koga, G.
Tetrahedron Lett. 1994, 35, 2027–2030; c) Bosch, M. P.;
Petschen, I; Guerrero, A. Synthesis 2000, 300–304; d)
Chandra, K. L.; Saranavan, P.; Singh, V. K. Tetrahedron Lett.
2001, 42, 5309–5311; e) Harjani, J. R.; Nara, S. J.; Salunkhe,
M. M., Sanghvi, Y. S. Nucleos., Nucleot. Nucleic
Acids 2005, 24, 819–822; f) Asadolah, K.; Heravi, M. M.
Monatsh. Chem. 2007, 138, 867–869; g) Bhatt, S.; Nayak, S.
K. Lett. Org. Chem. 2008, 5, 435–443; h) Liu, H.-X.; Wu, Q.-
P.; Shu, Y.-N.; Chen, X.; Xi, X.-D.; Du, T.-J.; Zhan, Q.-S.
Carbohydr. Res. 2009, 344, 2342–2348; i) Du, T.-J.; Wu, Q.-
P.; Liu, H.-X.; Chen, X.; Shu, Y.-N.; Xi, X.-D.; Zhan, Q.-S.;
Li, Y.-Z. Tetrahedron 2011, 67, 1096–1101.
11. a) Alexakis, A.; Gardette, M.; Colin, S. Tetrahedron Lett.
1988, 29, 2951–2954; b) Franck, X.; Figadère, B.; Cavé, A.
Tetrahedron Lett. 1995, 36, 711-714; c) Williams, C. M.;
Mander, L. N. Tetrahedron Lett. 2004, 45, 667–669; d)
Marette, C.; Larrouquet, C.; Tisnès, P.; Deloye J.-B.; Gras, E.
Tetrahedron Lett. 2006, 47, 6947–6950.
15. For a review on diarylmethyl derivatives as protecting group,
see: a) Petursson, S. J. Chemistry 2013, 2013, Article ID
183049 (doi 10.1155/2013/183049); b) Thornton, M. T.;
henderson, L. C. Org. Prep. Prod. Int. 2013, 45, 395–420.
16. a) Bikard, Y.; Weibel, J.-M.; Sirlin, C.; Dupuis, L.; Loeffler
J.-P. ; Pale, P. Tetrahedron Lett. 2007, 48, 8895–8899; b)
Bikard, Y.; Mezaache, R.; Weibel, J.-M.; Benkouider, A.;
Sirlin, C.; Pale, P. Tetrahedron 2008, 64, 10224–10232.
17. Mezaache, R.; Dembélé, Y. A.; Bikard, Y.; Weibel, J.-M.;
Blanc, A.; Pale, P. Tetrahedron Lett. 2009, 50, 7322–7326.
18. Specklin, S.; Gallier, F.; Mezaache, R.; Harkat, H.; Dembélé,
Y. A.; Weibel, J.-M.; Blanc, A.; Pale, P. Tetrahedron Lett.
2011, 52, 5820–5823.
19. For a recent review on reductive opening of acetals, see : a)
Ohlin, M.; Johnsson, R.; Ellervik, U. Carbohydr. Res. 2011,
346, 1358–1370.
20. Tan, Z.-P.; Wang, L.; Wang, J. B. Chinese Chem. Lett. 2000,
11, 753–756.
21. As already showed (see ref 17), other copper salts did not
gave positive results : CuCl2 required three times longer
reaction time and is around half less efficient than CuBr2;
Cu(OTf)2 gave very slow reaction, 10 times longer than with
CuBr2 for again half less efficiency; CuSO4 as well as CuO
did not lead to any reaction.
22. a) Knowles, J. P.; Whiting, A. Eur. J. Org. Chem. 2007,
3365–3368; b) Fedorenko, V. Yu.; Zverev, V. V.; Shtyrlin,
Yu. G., Shaikhutdinova, G. R.; Klimovitskii, E. N., Zh.
Obshch. Khim. 2002, 72, 1184–1188; c) Smith, C. J.; Ali, A.;
Balkovec, J. M.; Graham, D. W.; Hammond, M. L.; Patel, G.
F.; Rouen, G. P.; Smith, S. K.; Tata, J. R.; Einstein, M.; Ge,
L.; Harris, G. S.; Kelly, T. M.; Mazur, P.; Thompson, C. M.;
Wang, C. F.; Williamson, J. M.; Miller, D. K.; Pandit, S.;
Santoro, J. C.; Sitlani, A.; Yamin, T.-t. D.; O'Neill, E. A.;
Zaller, D. M.; Carballo-Jane, E.; Forrest, M. J.; Luell, S.
Bioorg. Med. Chem. Lett. 2005, 15, 2926–2931.
23. Krause, N. Ed. Modern Organocopper Chemistry; Wiley:
New-York, 2002.
Typical procedure: To a solution of acetal (1 mmol) and
BMPMOiPr (316 mg, 1.1 mmol) in dry acetonitrile (1 mL) was
added in one portion dried copper dibromide (22.5 mg, 0.1 mmol).
The resulting green solution was magnetically stirred under argon
at room temperature for 4.5 hours. The reaction mixture was
concentrated under vacuum and then diluted with ether (15 mL)
and water (15 mL). After partitioning, the aqueous layer was
extracted three times with ether (15 mL) and the combined
organic layers were dried over Na2SO4. After ether evaporation,
the residue was then purified by flash chromatography over silica
gel.
12. Iimura, S.; Manabe, K.; Kobayashi, S. Org. Lett. 2003, 5,
101–103.
13. Roos, E. C. ; Bernabé, P. ; Hiemstra, H. ; Speckamp, W. N.;
Kaptein, B.; Boesten, W. H. J. J. Org. Chem. 1995, 60, 1733–
1740.