Organic Letters
Letter
2014, 136, 5844. (f) Yu, Y.; Yang, W.; Rominger, F.; Hashmi, A. S. K.
Angew. Chem., Int. Ed. 2013, 52, 7586. (g) Yang, W.; Yu, Y.; Hansmann,
M. M.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int.
Ed. 2013, 52, 1329. (h) Riveiros, R.; Rodriguez, D.; Sestelo, J. P.;
Sarandeses, L. A. Org. Lett. 2006, 8, 1403. (i) Wu, M.; Kumar
Rayabarapu, D.; Cheng, C. J. Am. Chem. Soc. 2003, 125, 12426.
(j) Schwarz, L.; Choi, J.; Frost, T. M.; Hashmi, A. S. K. Angew. Chem., Int.
Ed. 2000, 39, 2285.
(7) (a) Zhao, J.; Liu, Y.; Ma, S. Org. Lett. 2008, 10, 1521. (b) Ma, S.; He,
Q.; Zhang, X. J. Org. Chem. 2005, 70, 3336.
(8) (a) Haag, B.; Mosrin, M.; Ila, H.; Malakhov, V.; Knochel, P. Angew.
Chem., Int. Ed. 2011, 50, 9794. (b) Mosrin, M.; Knochel, P. Org. Lett.
2009, 11, 1837.
(9) (a) Unsinn, A.; Ford, M. J.; Knochel, P. Org. Lett. 2013, 15, 1128.
(b) Haas, D.; Mosrin, M.; Knochel, P. Org. Lett. 2013, 15, 6162.
(c) Klier, L.; Bresser, T.; Nigst, T. A.; Karaghiosoff, K.; Knochel, P. J. Am.
Chem. Soc. 2012, 134, 13584. (d) Bresser, T.; Knochel, P. Angew. Chem.,
Int. Ed. 2011, 50, 1914. (e) Duez, S.; Bernhardt, S.; Heppekausen, J.;
Fleming, F. F.; Knochel, P. Org. Lett. 2011, 13, 1690. (f) Crestey, F.;
Knochel, P. Synthesis 2010, 7, 1097. (g) Monzon, G.; Knochel, P. Synlett
2010, 304. (h) Mosrin, M.; Bresser, T.; Knochel, P. Org. Lett. 2009, 11,
3406.
(10) (a) Duez, S.; Steib, A. K.; Knochel, P. Org. Lett. 2012, 14, 1951.
(b) Duez, S.; Steib, A. K.; Manolikakes, S. M.; Knochel, P. Angew. Chem.,
Int. Ed. 2011, 50, 7686.
(11) (a) Negishi, E. Acc. Chem. Res. 1982, 15, 340. (b) Negishi, E.;
Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc. 1980, 102, 3298.
(c) Negishi, E.; Kobayashi, M. J. Org. Chem. 1980, 45, 5223.
(12) Talbert, J.; Berk, S. C.; Yeh, M. C. P.; Knochel, P. J. Org. Chem.
1988, 53, 2390.
In conclusion, we have reported an efficient Pd-catalyzed
arylation of some 1-(trimethylsilyl)-3-aryl-1-propynes using
TMPZnCl·LiCl leading to trisubstituted allenes. Interestingly,
we have performed a one-pot bis-arylation of 1-(trimethylsilyl)-
3-phenyl-1-propyne affording regioselectively tetrasubstituted
allenes. Quantum chemical calculations and NMR studies
support the formation of allenylzinc and propargyllithium
intermediates.
ASSOCIATED CONTENT
* Supporting Information
■
S
Full experimental details and NMR data. This material is
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the European Research Council (ERC) under the
European Community’s Seventh Framework Programme (FP7/
2007-2014) ERC Grant Agreement No. 227763 and the
Forschungsgemeinschaft (SFB749, B2) for financial support.
We also thank BASF SE (Ludwigshafen, Germany) and
Rockwood Lithium GmbH (Hoechst, Germany) for the
generous gift of chemicals.
(13) The progress of the zincation of 2a was difficult to monitor since
the iodolysis of the allenylzinc intermediate gave unstable allenic
iodides.
(14) Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van
Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje, J. Organometallics 1995, 14,
3081.
(15) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am.
Chem. Soc. 2005, 127, 4865.
REFERENCES
■
(1) (a) Yu, S.; Ma, S. Angew. Chem., Int. Ed. 2012, 51, 3074.
(b) Hoffmann-Roder, A.; Krause, N. Angew. Chem., Int. Ed. 2004, 43,
̈
1196.
(2) (a) Tzirakis, M. D.; Marion, N.; Schweizer, W. B.; Diederich, F.
Chem. Commun. 2013, 49, 7605. (b) Rivera-Fuentes, P.; Diederich, F.
Angew. Chem., Int. Ed. 2012, 51, 2818.
(3) (a) Neff, R. K.; Frantz, D. E. ACS Catal. 2014, 4, 519. (b) Smirnov,
P.; Mathew, J.; Nijs, A.; Katan, E.; Karni, M.; Bolm, C.; Apeloig, Y.;
Marek, I. Angew. Chem., Int. Ed. 2013, 52, 13717. (c) Williams, D. R.;
Shah, A. A.; Mazumder, S.; Baik, M. Chem. Sci. 2013, 4, 238. (d) Xiao,
Q.; Wang, B.; Tian, L.; Yang, Y.; Ma, J.; Zhang, Y.; Chen, S.; Wang, J.
Angew. Chem., Int. Ed. 2013, 52, 9305. (e) Bejjani, J.; Botuha, C.;
(16) (a) Hunter, N. D.; Hadei, N.; Blagojevic, V.; Patschinski, P.;
Achonduh, G. T.; Avola, S.; Bohme, D. K.; Organ, M. G. Chem.Eur. J.
2011, 17, 7845. (b) Sase, S.; Jaric, M.; Metzger, A.; Malakhov, V.;
Knochel, P. J. Org. Chem. 2008, 73, 7380. (c) O’Brien, C. J.; Kantchev, E.
A. B.; Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.; Hopkinson, A. C.;
Organ, M. G. Chem.Eur. J. 2006, 12, 4743. (d) Organ, M. G.; Avola,
S.; Dubovyk, I.; Hadei, N.; Kantchev, E. A. B.; O’Brien, C. J.; Valente, C.
Chem.Eur. J. 2006, 12, 4749.
(17) See the Supporting Information.
́
Chemla, F.; Ferreira, F.; Magnus, S.; Perez-Luna, A. Organometallics
(18) The introduction of a trimethylsilyl acetylene group has a
remarkable effect on the acidity of the benzylic hydrogens. For instance,
the pKa value in DMSO of diphenylmethane (pKa = +32.3) is lowered by
around 10 orders of magnitude for 2a (pKa = +21.8: Bordwell, F. G.;
Matthews, W. S.; Vanier, N. R. J. Am. Chem. Soc. 1975, 97, 442). This
was calculated using the method published in Frischmuth, A.;
Fernandez, M.; Barl, N. M.; Achrainer, F.; Zipse, H.; Berionni, G.;
Mayr, H.; Karaghiosoff, K.; Knochel, P. Angew. Chem., Int. Ed. 2014, 53,
7928.
(19) The lateral zincation of 1-butyl-2-trimethylsilylacetylene led to
several products showing the limitation of such a metalation.
(20) (a) Hameury, T.; Guillemont, J.; Van Hijfte, L.; Bellosta, V.;
Cossy, J. Org. Lett. 2009, 11, 2397. (b) Gaudemar, M. Bull. Soc. Chim. Fr.
1962, 974.
2012, 31, 4876. (f) Hashmi, A. S. K. In Science of Synthesis; Mulzer, J.,
Ed.; Thieme: Stuttgart, 2008; Vol. 32, pp 13−52. (g) Zimmer, R.;
Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067.
(4) (a) Adams, C. S.; Weatherly, C. D.; Burke, E. G.; Schomaker, J. M.
Chem. Soc. Rev. 2014, 43, 3136. (b) He, Z.; Dobrovolsky, D.; Trinchera,
P.; Yudin, A. K. Org. Lett. 2013, 15, 334. (c) Sabbasani, V. R.; Lee, D.
Org. Lett. 2013, 15, 3954. (d) Chen, B.; Ma, S. Org. Lett. 2013, 15, 3884.
(e) Clavier, H.; Le Jeune, K.; de Riggi, I.; Tenaglia, A.; Buono, G. Org.
Lett. 2011, 13, 308. (f) Krause, N.; Winter, C. Chem. Rev. 2011, 111,
1994. (g) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2000, 39, 3590.
(5) (a) Wang, Y.; Zhang, W.; Ma, S. J. Am. Chem. Soc. 2013, 135, 11517.
(b) Wan, B.; Ma, S. Angew. Chem., Int. Ed. 2013, 52, 441. (c) Mundal, D.
A.; Lutz, K. E.; Thomson, R. J. J. Am. Chem. Soc. 2012, 134, 5782.
(d) Schade, M. A.; Yamada, S.; Knochel, P. Chem.Eur. J. 2011, 17,
4232. (e) Yu, S.; Ma, S. Chem. Commun. 2011, 47, 5384. (f) Bolte, B.;
Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc. 2010, 132, 7294.
(g) Guitchin, B. K.; Bienz, S. Organometallics 2004, 23, 4944.
(6) (a) Yang, W.; Hashmi, A. S. K. Chem. Soc. Rev. 2014, 43, 2941.
(b) Kitagaki, S.; Inagaki, F.; Mukai, C. Chem. Soc. Rev. 2014, 43, 2956.
(c) Le Bras, J.; Muzart, J. Chem. Soc. Rev. 2014, 43, 3003. (d) Mszar, N.
W.; Haeffner, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 3362.
(e) Shu, X.; Zhang, M.; He, Y.; Frei, H.; Toste, F. D. J. Am. Chem. Soc.
D
Org. Lett. XXXX, XXX, XXX−XXX