A Convenient Synthetic Route to Mannose 6-Phosphonate–Cholesteryl Conjugate 245
and the residue purified by silica gel column
C46H75BrO11: Calcd: C 62.50, H 8.55; Found: C 62.77,
H 8.63.
chromatography (light petroleum/ether 4:1 → ether)
affording
6
(210 mg, 45%). Rf = 0.41 (light
1
petroleum/ether 1:4). H NMR (CDCl3): δ = 0.67 (s,
3H, H-18ꢁ), 0.86 (d, 6H, J = 6.6 Hz, H-26ꢁ), 0.91
(d, 3H, J = 6.4 Hz, H-21ꢁ), 0.99 (s, 3H, H-19ꢁ),
0.80–2.50 (m, 30H, H-Chol H-6a and H-6b), 1.71
(s, 3H, Orthoester-CH ), 2.07 (s, 3H, CH CO), 2.11
8-(Cholest-5-en-3β-yloxy)-3,6-dioxaoctan-1-yl-
6-Deoxy-6-dihydroxyphosphinylmethylene-α-D-
mannopyranoside Disodium Salt (M6Pn/TEGC)
A
solution of 7 (67 mg, 76 ꢀmol) in tris-
3
3
(s, 3H, CH CO), 3.10–3.30 (m, 1H, H-3ꢁ), 3.45–3.70
(trimethylsilyl)phosphite (5 ml) was refluxed (160◦C)
for 16 h. The reaction mixture was poured into
saturated NaHCO3(aq) (50 ml). The aqueous layer
was extracted with CH2Cl2 (3 × 50 ml), and the or-
ganic layers were combined, dried (Na2SO4), fil-
tered, and evaporated under reduced pressure. The
crude mixture (showing a single signal by 31P NMR
spectroscopy at 27 ppm) was dissolved in MeOH
(5 ml) and NaOMe (35 mg, 610 ꢀmol) was added.
After 24 h, the reaction was neutralized with 1 M
HCl and concentrated under reduced pressure. The
residue was purified by silica gel column chromatog-
raphy (i-PrOH/NH4OH/H2O 6:3:1), then treated with
ion exchange resin (DOWEX 50WX2, Na+ form)
affording M6Pn/TEGC (31 mg, 55%). Rf = 0.52 (i-
PrOH/NH4OH/H2O 6:3:1). 1H NMR (D2O): δ = 0.70–
2.30 (m, 47H, H-Chol, H-6a, H-6b, H-7a, and H-
7b), 3.20–4.00 (m, 17H, OCH CH O, H-2, H-3, H-4,
3
(m, 15H, OCH CH O, H-5, H-7a, and H-7b), 4.59
2
2
(dd, 1H, J = 2.6, 3.5 Hz, H-2), 5.00–5.20 (m, 2H,
H-3 and H-4), 5.30–5.38 (m, 1H, H-6ꢁ), 5.44 (d,
1H, H-1). 13C NMR (CDCl3): δ = 12.2 (C-18ꢁ), 15.6–
41.7 (C-Chol, Orthoester-CH3 and C-6), 21.1, 21.2
(CH3CO), 29.1 (C-7), 50.6, 56.5, 57.2 (C-9ꢁ, C-14ꢁ, and
C-17ꢁ), 62.4, 66.2 (OCH2CH2O), 67.7 (C-4), 69.0, 70.3
(OCH2CH2O), 70.9 (C-3), 71.0 (OCH2CH2O), 71.1 (C-
5), 71.3 (OCH2CH2O), 76.8 (C-2), 79.9 (C-3ꢁ), 97.9 (C-
1), 121.9 (Orthoester-Cquat), 141.4 (C-5ꢁ), 170.2, 170.7
(CH3CO).
8-(Cholest-5-en-3β-yloxy)-3,6-dioxaoctan-1-yl-
7-Bromo-6,7-dideoxy-2,3,4-tri-O-acetyl-α-D-
manno-heptopyranoside (7)
2
2
To a cooled (−5◦C) solution of 6 (160 mg, 0.18 mmol)
H-5, and H-3ꢁ), 5.30–5.40 (m, 1H, H-6ꢁ). 31P NMR
(D2O): δ = 23.0 (s, P(O)(ONa)2). MS FAB > O (G/T):
m/z = 803 (M + H)+, 781 (M-Na + 2H)+. MS FAB < 0
(G/T): m/z = 757 (M-2Na + H)−.
˚
and molecular sieves (3 A) in CH2Cl2 (5 ml) was
added trimethylsilyl trifluoromethanesulfonate (3.3
ꢀl, 18 ꢀmol). The reaction was stirred for 5 min then
neutralized with Et3N (50 ꢀl) before being diluted
with H2O (50 ml). The aqueous layer was extracted
with CH2Cl2 (3 × 50 ml), and the organic layers com-
bined, dried (Na2SO4), filtered, and evaporated un-
der reduced pressure. The resulting residue was pu-
rified by silica gel column chromatography (light
petroleum/ether 9:1 → ether) affording 7 (65 mg,
40%). Rf = 0.58 (light petroleum/ether 1:4). 1H NMR
(CDCl3): δ = 0.60 (s, 3H, H-18ꢁ), 0.79 (d, 3H, J =
6.6 Hz, H-26ꢁ), 0.80 (d, 3H, H-26ꢁ), 0.84 (d, 3H,
J = 6.5 Hz, H-21ꢁ), 0.92 (s, 3H, H-19ꢁ), 0.70–2.35
(m, 28H, H-Chol), 1.85–1.95 (m, 1H, H-6a), 1.91
(s, 3H, CH CO), 1.99 (s, 3H, CH CO), 2.07 (s, 3H,
REFERENCES
[1] (a) Sharon, N.; Lis, H. Sci Am 1993, 268, 82–88; (b)
Varki, A. Glycobiology 1993, 3, 97–130; (c) Lis, H.;
Sharon, N. Chem Rev 1998, 98, 637–674.
[2] (a) Tong, P. Y.; Gregoy, W.; Kornfeld, S. J Biol Chem
1989, 264, 7962–7969; (b) Tong, P. Y.; Kornfeld, S. J
Biol Chem 1989, 264, 7970–7975.
[3] (a) Dahms, N. M.; Lobel, P.; Kornfeld, S. J Biol Chem
1989, 264, 12115–12118; (b) Me´resse, S.; Bauer, U.;
Ludwig, T.; Mauxion, F.; Schmidt, A.; Hoflack, B. Med
Sci 1993, 9, 148–156.
[4] Barragan, V.; Menger, F. M.; Caran, K. L.; Vidil, C.;
More`re, A.; Montero, J.-L. Chem Commun 2001, 85–
86.
[5] Rabinowitz, R. J Org Chem 1963, 28, 2975–2978.
[6] Garbay-Jaureguiberry, C.; Ficheux, D.; Roques, B. P.
Int J Peptide Protein Res 1992, 39, 523–527.
[7] (a) Le Mare´chal, P.; Froussios, C.; Level, M.; Azerad,
R. Carbohydr Res 1981, 94, 1–10; (b) Wang, M.
F.; Crilley, M. M. L.; Golding, B. T.; McInally, T.;
Robinson, D. H.; Tinker, A. J Chem Soc Commun
1991, 667–668.
[8] For Several examples of one-carbon chain elonga-
tion of alcohols see: (a) Baer, H. H.; Hanna, H. R.
Carbohydr Res 1982, 102, 169–183; (b) Rouzaud, D.;
Sinay¨, P. J Chem Soc Chem Commun 1983, 1353–
1354; (c) Burford, C.; Cooke, F.; Roy, G.; Magnus, P.
3
3
CH CO), 2.00–2.10 (m, 1H, H-6b), 3.05–3.15 (m, 1H,
3
H-3ꢁ), 3.40–3.50 (m, 1H, H-7a), 3.50–3.70 (m, 13H,
OCH CH O and H-7b), 3.97 (td, 1H, J = 2.5, 9.9 Hz,
2
2
H-5), 4.75 (d, 1H, J = 1.5 Hz, H-1), 5.04 (t, 1H, H-
4), 5.21 (dd, 1H, J = 3.5 Hz, H-2), 5.25–5.30 (m, 1H,
H-6ꢁ), 5.27 (dd, 1H, H-3). 13C NMR (CDCl3): δ = 12.3
(C-18ꢁ), 19.1–42.7 (C-Chol), 21.1, 21.2, 21.5 (CH3CO),
29.2 (C-7), 34.9 (C-6), 50.6, 56.6, 57.2 (C-9ꢁ, C-14ꢁ,
and C-17ꢁ), 62.6, 67.7 (OCH2CH2O), 67.9 (C-5), 69.5
(C-3), 69.8 (C-4), 70.1 (C-2), 70.5, 71.0, 71.2, 71.3
(OCH2CH2O), 79.9 (C-3ꢁ), 97.8 (C-1), 121.9 (C-6ꢁ),
141.4 (C-5ꢁ), 170.2, 170.3, 170.5 (CH3CO). Anal for