10.1002/anie.201813464
Angewandte Chemie International Edition
COMMUNICATION
[6]
[7]
[8]
a) T. Morofuji, A. Shimizu, J.-i. Yoshida, J. Am. Chem. Soc. 2015, 137,
9816-9819; b) Z.-W. Hou, Z.-Y. Mao, J. Song, H.-C. Xu, ACS Catal. 2017,
7, 5810-5813; c) A. Wiebe, T. Gieshoff, S. Mohle, E. ROdrigo, M. Zirbes,
S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 5594-5619; d) N.
Sauermann, R. Mei, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57,
5090-5094; e) S. Tang, S. Wang, Y. Liu, H. Cong, A. Lei, Angew. Chem.
Int. Ed. 2018, 57, 4737-4741; f) Y. Qiu, C. Tian, L. Massignan, T. Rogge,
L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 5818-5822.
which in turn, reduces the substrate and generates dinitrogen via
diimide B, another plausible reducing reagent. In addition, the
direct generation of hydrazine from ammonia and consequent
hydrogenation of substrates may operate in this transformation as
well (path b).
a) D. Hayrapetyan, R. K. Rit, M. Kratz, K. Tschulik, L. J. Gooßen, Chem.
Eur. J. 2018; b) A. J. J. Lennox, S. L. Goes, M. P. Webster, H. F. Koolman,
S. W. Djuric, S. S. Stahl, J. Am. Chem. Soc. 2018, 140, 11227-11231; c)
R. R. Merchant, K. M. Oberg, Y. Lin, A. J. E. Novak, J. Felding, P. S.
Baran, J. Am. Chem. Soc. 2018, 140, 7462-7465; d) L. Sebastian, F.-U.
B. Antonio, D. Maurice, S. Dieter, F. Robert, W. S. R., Chem. Eur. J. 2018,
24, 6057-6061. e) S. Lips, D. Schollmeyer, R. Franke, S. R. Waldvogel,
Angew. Chem. Int. Ed. 2018, 57, 13325-13329.
a) R. Hayashi, A. Shimizu, J.-i. Yoshida, J. Am. Chem. Soc. 2016, 138,
8400-8403; b) N. Fu, G. S. Sauer, A. Saha, A. Loo, S. Lin, Science 2017,
357, 575-579; c) C. Li, Y. Kawamata, H. Nakamura, J. C. Vantourout, Z.
Liu, Q. Hou, D. Bao, J. T. Starr, J. Chen, M. Yan, P. S. Baran, Angew.
Chem. Int. Ed. 2017, 56, 13088-13093; d) C. Tian, L. Massignan, H. T.
Meyer, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 2383-2387; e) X.
Gao, P. Wang, L. Zeng, S. Tang, A. Lei, J. Am. Chem. Soc. 2018, 140,
4195-4199; f) S. Herold, D. Bafaluy, K. Muñiz, Green Chemistry 2018,
20, 3191-3196; g) Z. W. Hou, Z. Y. Mao, Y. Y. Melcamu, X. Lu, H. C. Xu,
Angew. Chem. Int. Ed. 2018, 57, 1636-1639; h) J. Li, W. Huang, J. Chen,
L. He, X. Cheng, G. Li, Angew. Chem. Int. Ed. 2018, 57, 5695-5698; i)
D.-Z. Lin, J.-M. Huang, Org. Lett. 2018, 20, 2112-2115; j) S. Tang, S.
Wang, Y. Liu, H. Cong, A. Lei, Angew. Chem. Int. Ed. 2018, 57, 4737-
4741; k) Q.-L. Yang, X.-Y. Wang, J.-Y. Lu, L.-P. Zhang, P. Fang, T.-S.
Mei, J. Am. Chem. Soc. 2018, 140, 11487-11494; l) S. Zhang, L. Li, M.
Xue, R. Zhang, K. Xu, C. Zeng, Org. Lett. 2018, 20, 3443-3446; m) H.-B.
Zhao, P. Xu, J. Song, H.-C. Xu, Angew. Chem. Int. Ed.,
doi:10.1002/anie.201809679.
Scheme 5. A plausible pathway of electrochemical hydrogenation reaction
In summary, we have developed a convenient, transition-metal-
free electrochemical protocol for hydrogenation of alkenes,
alkynes and ketones with gaseous ammonia as hydrogen source.
This protocol was compatible with a variety of functional groups,
including unconjugated alkenes; benzyl, Boc, Cbz, Alloc, sulfide,
silyl, and borate groups, and heterocycles. The ammonia, which
is safe to use in an electrochemical setting, organic-solvent-
compatible, and an environmentally friendly bulk chemical,
provides a new and complementary approach for hydrogenation
reactions employing hydrogen.
[9]
a) Y. Kawamata, M. Yan, Z. Liu, D.-H. Bao, J. Chen, J. T. Starr, P. S.
Baran, J. Am. Chem. Soc. 2017, 139, 7448-7451; b) N. Sauermann, T.
H. Meyer, C. Tian, L. Ackermann, J. Am. Chem. Soc. 2017, 139, 18452-
18455; c) W. Fei, R. Mohammad, S. S. S., Angew. Chem. Int. Ed. 2018,
57, 6686-6690; d) K. A. M., S. Miriam, C. Raanan, N. Ronny, Angew.
Chem. Int. Ed. 2018, 57, 5403-5407; e) A. Shrestha, M. Lee, A. L. Dunn,
M. S. Sanford, Org. Lett. 2018, 20, 204-207; f) S. Tang, D. Wang, Y. Liu,
L. Zeng, A. Lei, Nat. Commun. 2018, 9, 798; g) S. Zhang, L. Li, H. Wang,
Q. Li, W. Liu, K. Xu, C. Zeng, Org. Lett. 2018, 20, 252-255.
Acknowledgements
This work was supported by the National Science Foundation of
China (nos. 21572099 and 21332005) and the Natural Science
Foundation of Jiangsu Province (no. BK20151379). This study
was supported by the Open Project of State Key Laboratory Cul-
tivation Base for TCM Quality and Efficacy, Nanjing University of
Chinese Medicine (No. TCMQ & E 201702).
10]
a) N. Fu, G. S. Sauer, S. Lin, J. Am. Chem. Soc. 2017, 139, 15548-
15553; b) M. Rafiee, F. Wang, D. P. Hruszkewycz, S. S. Stahl, J. Am.
Chem. Soc. 2018, 140, 22-25.
Keywords: sustainable • hydrogen storage material • ammonia •
electrochemistry • hydrogenation
[11] a) X. Hu, G. Zhang, F. Bu, A. Lei, Angew. Chem. Int. Ed. 2018, 57, 1286-
1290; b) L. Li, S. Luo, Org. Lett. 2018, 20, 1324-1327; c) R. Mei, N.
Sauermann, J. C. A. Oliveira, L. Ackermann, J. Am. Chem. Soc. 2018,
140, 7913-7921; d) J. C. Siu, G. S. Sauer, A. Saha, R. L. Macey, N. Fu,
T. Chauviré, K. M. Lancaster, S. Lin, J. Am. Chem. Soc. 2018; e) P. Xiong,
H.-H. Xu, J. Song, H.-C. Xu, J. Am. Chem. Soc. 2018, 140, 2460-2464;
f) K.-Y. Ye, G. Pombar, N. Fu, G. S. Sauer, I. Keresztes, S. Lin, J. Am.
Chem. Soc. 2018, 140, 2438-2441; g) L. Zeng, H. Li, S. Tang, X. Gao, Y.
Deng, G. Zhang, C.-W. Pao, J.-L. Chen, J.-F. Lee, A. Lei, ACS Catal.
2018, 8, 5448-5453; h) Z.-J. Wu, S.-R. Li, H.-C. Xu, Angew. Chem. Int.
Ed., 10.1002/anie.201807683.
[1]
J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y.
Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G.
Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F.
Schneider, R. R. Schrock, Science 2018, 360, eaar6611.
[2]
[3]
R. F. Service, Science 2018, 361, 120-123.
a) J. Zhao, A. S. Goldman, J. F. Hartwig, Science 2005, 307, 1080-1082;
b) M. J. Bezdek, S. Guo, P. J. Chirik, Science 2016, 354, 730-733.
H. E. Zimmerman, Acc. Chem. Res. 2012, 45, 164-170.
[4]
[5]
[12] J. Chaussard, C. Combellas, A. Thiebault, Tetrahedron Lett. 1987, 28,
1173-1174.
a) R. Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492-2521; b) M.
Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230-13319;
c) Y. Jiang, K. Xu, C. Zeng, Chem. Rev. 2018, 118, 4485-4540; d) K. D.
Moeller, Chem. Rev. 2018, 118, 4817-4833; e) A. Wiebe, T. Gieshoff, S.
Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Angew. Chem. Int. Ed.
2018, 57, 5594-5619; f) J.-i. Yoshida, A. Shimizu, R. Hayashi, Chem.
Rev. 2018, 118, 4702-4730.
[13] F. Zhou, C. Jehoulet, A. J. Bard, J. Am. Chem. Soc. 1992, 114, 11004-
11006.
[14] H.-B. Zhao, Z.-J. Liu, J.Song, H.-C. Xu, Angew. Chem. Int. Ed. 2017, 56,
12732-12735.
This article is protected by copyright. All rights reserved.