Page 5 of 6
Organic & Biomolecular Chemistry
Please do not adjust margins
Journal Name
COMMUNICATION
8
9
Acknowledgements
DOI: 10.1039/C6OB01183G
Weinheim, Germany, 2007
.
This work was supported by the National Research Foundation
of Korea (NRF) grants funded by the Korea government (MSIP)
(NRF-2015R1A5A1008958 and NRF-2015R1C1A2A01053504).
We thank Osaka University for an International Collaboration
Grant to ST and KO.
K.-S. Masters, S. Bräse, Angew. Chem. Int. Ed. 2013, 52, 866-
869.
10 For general reviews, see: a) C. W. G. Fishwick, D. W. Jones in
The Quinonoid Compounds, Vol. 1 (Ed.: S. Patai), Wiley,
Chichester, 1988, pp. 403-453; b) K. T. Finley in The
Quinonoid Compounds, Vol. 1 (Ed.: S. Patai), Wiley,
Chichester, 1988, pp. 537-717; c) R. M. Mariarty, O. M.
Prakash in Organic Reactions, Wiley, Hoboken, 2004, pp.
327-415; d) A. V. Pinto, S. L. de Castro, Molecules 2009, 14,
4570-4590.
11 E. Ghera, Y. Ben-David, J. Org. Chem. 1985, 50, 3355-3359.
12 a) S. A. Woski, M. Koreeda, J. Org. Chem. 1992, 57, 5736-
5741; b) S. Zippel, P. Boldt, Synthesis 1997, 173-175.
13 a) P. M. Deya, M. Dopico, A. G. Raso, J. Morey, J. M. Saa,
Tetrahedron 1987, 43, 3523-3532; b) H. M. Chang, K. Y. Chui,
F. L. Tan, Y. Yang, Z. P. Zhong, C. M. Lee, H. L. Sham, H. N. C.
Wong, J. Med. Chem. 1991, 34, 1675-1692.
Notes and references
‡ Footnotes relaꢀng to the main text should appear here. These
might include comments relevant to but not central to the
matter under discussion, limited experimental and spectral data,
and crystallographic data.
1
For general reviews, see: a) E. I. Solomon, U. M. Sundara, T.
E. Machonkin, Chem. Rev. 1996, 96, 2563-2606; b) H. Decker,
R. Dillinger, F. Tuczek, Angew. Chem. Int. Ed. 2006, 45, 4546-
4550; c) M. Rolff, J. Schottenheim, H. Decker, F. Tuczek,
Chem. Soc. Rev. 2011, 40, 4077-4098; d) E. I. Solomon, D. E.
Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M.
Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt,
L. Tian, Chem. Rev. 2014, 114, 3659-3853.
For selected examples, see: a) M. Réglier, C. Jorand, B.
Waegell, J. Chem. Soc. Chem. Commun. 1990, 1752-1755; b)
L. Casella, M. Gullotti, R. Radaelli, P. Di Gennaro, J. Chem.
Soc. Chem. Commun. 1991, 1611-1612; c) L. Casella, E.
Monzani, M. Gullotti, D. Cavagnino, G. Cerina, L.
14 a) D. Magdziak, A. A. Rodriguez, R. W. Van De Water, T. R. R.
Pettus, Org. Lett. 2002, 4, 285-288; b) W. Huang, J. Li, W.
Zhang, Y. Zhou, C. Xie, Y. Luo, Y. Li, J. Wang, J. Li, W. Lu,
Bioorg. Med. Chem. Lett. 2006, 16, 1905-1908; c) Uyanik, T.
Mutsuga, K. Ishihara, Molecules 2012, 17, 8604-8616.
2
15 a) S. Suresh, S. Skaria, S. Ponrathnam, Synth. Commun. 1996
,
26, 2113-2117; b) S. M. S. Chauhan, B. Kalra, P. P.
Mohapatra, J. Mol. Catal. A: Chem. 1999, 137, 85-92; c) G. M.
S. R. O. Rocha, R. A. W. Johnstone, M. G. P. M. S. Neves, J.
Mol. Catal. A: Chem. 2002, 187, 95-104; d) M. G. Egusquiza,
G. P. Romanelli, C. I. Cabello, I. L. Botto, H. J. Thomas, Catal.
Commun. 2008, 9, 45-50; e) M. O. Ratnikov, L. E. Farkas, E. C.
McLaughlin, G. Chiou, J. Choi, S. H. El-Khalafy, M. P. Doyle, J.
Org. Chem. 2011, 76, 2585-2593; f) P. K. Khatri, S. L. Jain,
Catal. Lett. 2012, 142, 1020-1025.
Santagostini, R. Ugo, Inorg. Chem. 1996, 35, 7516-7525; d)
M. Rolff, J. Schottenheim, G. Peters, F. Tuczek, Angew. Chem.
Int. Ed. 2010, 49, 6438-6442; e) A. Hoffmann, C. Citek, S.
Binder, A. Goos, M. Rübhausen, O. Troeppner, I. Ivanović-
Burmazović, E. C. Wasinger, T. D. P. Stack, S. Herres-Pawlis,
Angew. Chem. Int. Ed. 2013, 52, 5398–5401; f) K. V. N.
Esguerra, Y. Fall, L. Petitjean, J.-P. Lumb, J. Am. Chem. Soc.
2014, 136, 7662-7668; g) A. Arnold, R. Metzinger, C. Limberg,
Chem. Eur. J. 2014, 21, 1198-1207; h) M. S. Askari, K. V. N.
16 a) I. T. Crosby, M. L. Rose, M. P. Collis, P. J. de Bruyn, P. L. C.
Keep, A. D. Robertson, Aust. J. Chem. 2008, 61, 768-784; b) I.
T. Crosby, D. G. Bourke, E. D. Jones, T. P. Jeynes, S. Cox, J. A.
Esguerra, J.-P. Lumb, X. Ottenwaelder, Inorg. Chem. 2105
,
V. Coates, A. D. Robertson, Bioorg. Med. Chem. Lett. 2011
21, 1644-1648.
,
54, 8665-8672.
3
For recent catalytic oxidative phenol couplings, see: a) B.-S.
Liao, Y.-H. Liu, S.-M. Peng, S.-T. Liu, Dalton Trans. 2012, 41,
1158-1164; b) Q. Jiang, W. Sheng, M. Tian, J. Tang, C. Guo,
Eur. J. Org. Chem. 2013, 1861-1866; c) J. Feng, X.-B. Yang, S.
Liang, J. Zhang, X.-Q. Yu, Tetrahedron Lett. 2013, 54, 355-
357; d) Y. E. Lee, T. Cao, C. Torruellas, M. C. Kozlowski, J. Am.
Chem. Soc. 2014, 136, 6782-6785; e) N. Y. More, M.
17 H. Y. Kim, K. Oh, Org. Lett. 2014, 16, 5934-5936.
18 Y. Takizawa, T. Munakata, Y. Iwasa, T. Suzuki, T. Mitsuhashi,
J. Org. Chem. 1985, 50, 4383-4386.
19 Y. Takizawa, T. Munakata, Y. Iwasa, T. Suzuki, T. Mitsuhashi,
J. Org. Chem. 1985, 50, 4383-4386.
20 ortho-Naphthoquinones are not generally stable under
prolonged oxidation conditions. The subjection of 2a under
our optimized oxidation conditions for 16 h resulted in the
recovery of 89% 2a that contained 2% of benzylic oxidation
products.
21 The use of 10 mol% of Cu(OAc)2-DBN resulted in the
formation of 3f in 31% in 68 h. A recent 4,4-biaryl-BINOL
synthesis by Okuma utilized 200 mol% of CuCl2 and 80 mol%
of phenylethylamine to give products in 60-80% yields; see K.
Jeganmohan, Org. Lett. 2015, 17, 3042-3045; f) E. Gaster, Y.
Vainer, A. Regev, S. Narute, K. Sudheendran, A. Werbeloff, H.
Shalit, D. Pappo. Angew. Chem. Int. Ed. 2015, 54, 4198-4202;
g) K. Morimoto, K. Sakamoto, T. Ohshika, T. Dohi, Y. Kita,
Angew. Chem. Int. Ed. 2016, 55, 3652-3656. For a recent
review, see: h) S. E. Allen, R. R. Wolvoord, R. Padilla-Salinas,
M. C. Kozlowski, Chem. Rev. 2013, 113, 6234-6458.
4
For recent reviews, see: a) J. M. Brunel, Chem. Rev. 2007,
Okuma, K. Horigami, N. Nagahora, K. Shioji, Synthesis 2015
47, 2937-2944.
,
107, PR1-PR45; b) M. C. Kozlowski, B. J. Morgan, E. C. Linton,
Chem. Soc. Rev. 2009, 38, 3193-3207; c) M. Klussmann, D.
Sureshkumar, Synthesis 2011, 353-359
22 For an observation of the aerial oxidation of naphthalene-
1,2-diol, see: a) A. Takuwa, O. Soga, J. Chem. Soc. Perkin
5
6
W. Brackman, E. Havinga, Recl. Trav. Chim. Pays-Bas 1955
,
Trans. II, 1985, 409-411. For phenanthrene-9,10-diols, see: b)
J. W. Ciszek, J. M. Tour, Tetrahedron Lett. 2004, 45, 2801-
2803; c) S. N. Keller, N. L. Veltri, T. C. Sutherland, Org. Lett.
2013, 15, 4798-4801.
74, 937-955.
For selected examples, see: a) M. Iwata, H. Kuzuhara, Bull.
Chem. Soc. Jpn. 1985, 58, 1609; b) E. Ghera, R. Maurya, Y.
Ben-David, Tetrahedron Lett. 1986, 27, 3935-3938; c) G.
Wurm, B. Gößler, Arch. Pharm, 1987, 320, 564-566; d) E.
Ghera, R. Maurya, Tetrahedron Lett. 1987, 28, 709-712; e) J.
Illesinghe, R. Ebeling, B. Ferguson, J. Patel, E. M. Campi, W. R.
Jackson, A. J. Robinson, Aust. J. Chem. 2004, 57, 167-176.
K. V. N. Esguerra, Y. Fall, J.-P. Lumb, Angew. Chem. Int. Ed.
2014, 53, 5877-5881.
23 Control experiments using 20 mol% BINOL 3b additive only
led to the formation of 3a in 12%, confirming the product
inhibition by BINOLs through the sequestration of copper
catalysts.
24 Halomethanes are excellent electron acceptors, see: a) H. M.
Sung-Suh, L. Kevan, J. Phys. Chem. A 1997, 101, 1414-1418;
7
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins