of 3 from the dark reaction mixture with a yellow precipitate. The
supernatant was filtered, the mustard-yellow solid was washed with
hexanes, and dried in vacuo. Yield: 0.78 g (90%). (Anal. Calc.: C, 47.00; H,
6.96; N, 6.45. Found: C, 46.57; H, 6.76; N, 6.31%). 3 (0.12 g, 0.28 mmol)
was dissolved in 1 mL CH2Cl2 and stirred under N2 at rt for 10 min. Pyridine
(4.0 g, 50 mmol) was added to the yellow solution and stirred for 2 h.
Hexanes (100 mL) were added to precipitate the product (1), then filtered,
washed with hexanes and dried in vacuo. Yield: 0.094 g (80%). The NMR
data of 1 matches that reported in ref. 7a. We found that some batches of
Ru(NBD)Cl2/n produced 1 containing small amounts ( ~ 3%) of trans-
RuCl2(pip)4. If required, this impurity is easily removed by recrystallization
from CH2Cl2–hexanes. The impurity is substantially less soluble than 1 in
this solvent mixture.
‡
Crystal data for 5: C46H54Cl2FeN2P2Ru·0.5C2H4Cl2, M = 974.15,
orthorhombic, a = 22.663(3), b = 13.3050(15), c = 14.5132(16) Å, V =
4376.2(8) Å3, T = 193 K, space group P21212 (no. 18), Z = 4, m (Mo Ka)
= 0.969 mm21, 24 602 reflections measured, 9 008 unique (Rint = 0.0985),
2
R1 (F) = 0.0565 for 6545 observed data [Fo 4 2s(Fo2)], wR2 (F2) =
0.1107 for all unique data, Flack parameter x = 20.02(3).
crystallographic data in .cif or other electronic format.
§ The ee’s were determined as described in ref. 7a.
Fig. 1 Crystal structure of trans-RuCl2((R)-(S)-Josiphos)(py)2 (5) as
determined by X-ray diffraction. Hydrogen atoms on C(1) and C(2) are
shown with arbitrarily small thermal parameters in idealized positions. All
other hydrogen atoms have been omitted. Only the ipso carbons of the
phenyl and cyclohexyl groups are shown. Selected bond distances [Å] and
bond angles [°] are as follows. Ru–Cl(1) 2.4310(16), Ru–Cl(2) 2.4170(15),
Ru–P(1) 2.2878(18), Ru–P(2) 2.3309(18), Ru–N(1) 2.233(5), Ru–N(2)
2.224(5), Cl(1)–Ru–Cl(2) 173.51(6), P(1)–Ru–P(2) 88.56(6), N(1)–Ru–
N(2) 83.87(19).
1 (a) R. Noyori and T. Ohkuma, Angew. Chem., Int. Ed., 2001, 40, 40; (b)
T. Ohkuma, M. Koizumi, K. Muñiz, G. Hilt, C. Kabuto and R. Noyori,
J. Am. Chem. Soc., 2002, 124, 6508; (c) R. Noyori, Angew. Chem., Int.
Ed., 2002, 41, 2008.
2 R. Noyori, M. Koizumi, D. Ishii and T. Ohkuma, Pure Appl. Chem.,
2001, 73, 227.
3 (a) K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya and R. Noyori,
Angew. Chem., Int. Ed., 1997, 36, 285; (b) D. A. Alonso, P. Brandt, S.
J. M. Nordin and P. G. Andersson, J. Am. Chem. Soc., 1999, 121, 9580;
(c) M. Yamakawa, H. Ito and R. Noyori, J. Am. Chem. Soc., 2000, 122,
1466; (d) N. Bernard, F. Delbecq, P. Sautet, F. Fache and M. Lemaire,
Organometallics, 2000, 19, 5715; (e) D. G. I. Petra, J. N. H. Reek, J.-W.
Handgraaf, E. J. Meijer, P. Dierkes, P. C. J. Kamer, J. Brussee, H. E.
Schoemaker and P. W. M. van Leeuwen, Chem. Eur. J., 2000, 6, 2818;
(f) R. Noyori, M. Yamakawa and S. Hashguchi, J. Org. Chem., 2001, 66,
7931.
4 (a) K. Abdur-Rashid, A. J. Lough and R. H. Morris, Organometallics,
2000, 19, 2655; (b) K. Abdur-Rashid, A. J. Lough and R. H. Morris,
Organometallics, 2001, 20, 1047; (c) K. Abdur-Rashid, M. Faatz, A. J.
Lough and R. H. Morris, J. Am. Chem. Soc., 2001, 123, 7473; (d) K.
Abdur-Rashid, S. E. Clapham, A. Hadzovic, J. N. Harvey, A. J. Lough
and R. H. Morris, J. Am. Chem. Soc., 2002, 124, 15104.
5 R. Hartmann and P. Chen, Angew. Chem., Int. Ed., 2001, 40, 3581.
6 C. P. Casey, S. W. Singer, D. R. Powell, R. K. Hayashi and M. Kavana,
J. Am. Chem. Soc., 2001, 123, 1090.
Table
1 Hydrogenation of 1A-acetonaphthone catalyzed by trans-
a
RuCl2((R)-(S)-Josiphos)L2
Catalyst
S/C
Time/h
% Conversion
% ee
5
2 500
24
48
24
24
40
96
100
90
98 (S)
98 (S)
98 (S)
99 (S)
6
7
2 500
2 500
a Hydrogenations done in 2-propanol at 60 °C under 4 atm. dihydrogen, in
the presence of 4 equiv. of KOtBu per Ru, where [ketone] = 1 M.
catalysts 6 and 7, containing the opposite enantiomers of dpen,
both produced 1-(1-naphthyl)ethanol in nearly the same ee as 5,
showing that the asymmetric induction of the Josiphos ligand
dominates the enantioselectivity of this catalytic hydrogenation.
Only 5% conversion was obtained after 24 h using 5 as catalyst
in the absence of hydrogen.
7 (a) O. M. Akotsi, K. Metera, R. D. Reid, R. McDonald and S. H.
Bergens, Chirality, 2000, 12, 514; (b) O. M. Akotsi, R. McDonald and
S. H. Bergens, Can. J. Chem., 2002, 80, 1555.
Noyori et al.’s discovery and development of Ru(diphosphi-
ne)(diamine) catalysts incorporating amine ligands with N–H
bonds has revolutionized the field of enantioselective catalytic
hydrogenation of ketones. The catalysts incorporating ligands
with N–H groups are more active and are generally more
selective than trans-RuCl2(diphosphine)(py)2. The results pre-
sented in this paper do show, however, that useful rates and high
enantioselectivities can be obtained in the absence of ligands
with N–H groups.12 As such, they add flexibility to the design
of catalyst precursors for such hydrogenations. Consistent with
this premise is our direct observation that addition of hydrogen
and ruthenium across the ketone double bond is quite rapid in
the absence of N–H groups for certain catalyst–ketone combina-
tions.13 Finally, the new synthesis of 1 facilitates its use as a
general synthon for ruthenium-diphosphine catalysts.
8 (a) S. L. Quieroz, A. A. Batista, G. Oliva, M. T. D. P. Gambardell, R.
H. A. Santos, K. S. MacFarlane, S. J. Rettig and B. R. James, Inorg.
Chim. Acta, 1998, 267, 208; (b) P. W. Cyr, S. J. Rettig, B. O. Patrick and
B. R. James, Chem. Commun., 2001, 17, 1570; (c) P. W. Cyr, B. O.
Patrick and B. R. James, Organometallics, 2002, 21, 4672.
9 For comprehensive reviews on asymmetric hydrogenations see ref 1a
and: (a) R. Noyori, in Asymmetric Catalysis in Organic Synthesis,
Wiley-Interscience, New York, 1994, p. 16; (b) Reductions in Organic
Chemistry, Ed. A. F. Abdel-Magid, Adv. Chem. Ser. No. 641, American
Chemical Society, Washington, DC, 1996; (c) D. J. Ager and S. A.
Laneman, Tetrahedron: Asymmetry, 1997, 8, 3327; (d) Comprehensive
Asymmetric Catalyses, Eds. E. N. Jacobsen, A. Pfaltz and H.
Yamamoto, Springer, Berlin, 1999; (e) T. Ohkuma, M. Kitamura and R.
Noyori, in Catalytic Asymmetric Synthesis, Ed. I. Ojima, Wiley-VCH,
New York, 2000, Chap. 1; (f) J. P. Genêt, Pure Appl. Chem., 2002, 74,
77.
10 C. Potvin, J. M. Manoli, G. Pannetier, R. Chevalier and N. Platzer, J.
Organomet. Chem., 1976, 113, 273.
11 S. D. Drouin, D. Amoroso, G. P. A. Yap and D. E. Fogg,
Organometallics, 2002, 21, 1042.
Notes and references
† Preparation of trans-RuCl2(NBD)(py)2 (1) via trans-RuCl2(NBD)(pip)2
(3): Ru(NBD)Cl2/n (0.51 g, 1.9 mmol) and piperidine (0.81 g, 9.6 mmol)
were suspended in 2.3 mL of acetone and the mixture stirred rapidly under
N2 at rt for 16 h. Hexanes (30 mL) was added to complete the precipitation
12 We point out that numerous derivatives of Josiphos are now available
commercially (e.g. Strem Chemicals, Inc.).
13 C. J. A. Daley and S. H. Bergens, J. Am. Chem. Soc., 2002, 124,
3680.
CHEM. COMMUN., 2003, 750–751
751