328
B. Lygo, B Allbutt
LETTER
(5) See for example ref.4a and: (a) Kim, S.; Lee, J.; Lee, T.;
In conclusion, we have studied the asymmetric phase-
transfer alkylation of a series of glycine imine esters and
found that the benzhydryl esters can serve as a useful al-
ternative to the more commonly employed tert-butyl es-
ters. Exploitation of this in target synthesis is currently
under investigation and will be reported in due course.
Park, H. G.; Kim, D. Org. Lett. 2003, 5, 2703.
(b) Armstrong, A.; Scutt, J. N. Org. Lett. 2003, 5, 2331.
(c) Lygo, B.; Andrews, B. I. Tetrahedron Lett. 2003, 44,
4499. (d) Boisnard, S.; Carbonnelle, A.-C.; Zhu, J. Org. Lett.
2001, 3, 2061. (e) Lygo, B. Tetrahedron Lett. 1999, 40,
1389.
(6) O’Donnell, M. J.; Polt, R. L. J. Org. Chem. 1982, 47, 2663.
(7) For examples that illustrate of the utility of this see:
(a) Mitchell, S. A.; Pratt, M. R.; Hruby, V. J.; Polt, R. J. Org.
Chem. 2001, 66, 2327. (b) Tilley, J. W.; Sarabu, R.;
Wagner, R.; Mulkerins, K. J. Org. Chem. 1990, 55, 906.
(c) Felix, A. M.; Heimer, E. P.; Lambros, T. J.; Tzougraki,
C.; Meienhofer, J. J. Org. Chem. 1978, 43, 4194.
Acknowledgment
We thank the EPSRC for funding and AstraZeneca for a studentship
(to B.A.). We also thank Mr. S. R. James, Dr. D. Levin and Dr. B.
McKeever for helpful discussions, and acknowledge use of the
EPSRC’s Chemical Database Service at Daresbury.
(8) O’Donnell, M. J.; Sennett, W. D.; Wu, S. J. Am. Chem. Soc.
1989, 111, 2353.
(9) Representative Procedure: A solution of salt ent-4 (1.2
mg, 1 mol%) and imine 1b (50 mg, 0.12 mmol) in toluene
(4 mL) was cooled to 0 °C, degassed, and placed under an
argon atmosphere. tert-Butyl bromoacetate (22 mL, 0.14
mmol) was added followed by degassed 15 M aq KOH
(1mL). The resulting mixture stirred at 1500 rpm for 45 min,
then diluted with H2O (5 mL) and extracted with EtOAc
(3 × 4 mL). The combined organic extracts were dried
(MgSO4) and concentrated under reduced pressure. Residual
tert-butyl bromoacetate was removed under vacuum (1 mm
Hg, r.t.) to afford imine 2b¢¢¢ as a colourless oil (64 mg,
100%, 86% ee). 1H NMR (400 MHz, CDCl3): d = 7.62–7.60
(2 H, m, ArH), 7.41–7.23 (16 H, m, ArH), 7.16–7.13 (2 H,
m, ArH), 6.89 (1 H, s, OCHPh2), 4.58 (1 H, dd, J = 7.5, 5.5
Hz, H-2), 2.99 (1 H, dd, J = 15.5, 5.5 Hz, H-3a), 2.85 (1 H,
dd, J = 15.5, 7.5 Hz, H-3b), 1.35 (9H, s, t-Bu). 13C NMR
(100 MHz, CDCl3): d = 171.8 (C), 170.0 (C), 139.9 (C),
139.9 (C), 139.6 (C), 136.0 (C), 130.5 (CH), 129.0 (CH),
128.8 (CH), 128.5 (CH), 128.0 (CH), 128.0 (CH), 127.9
(CH), 127.4 (CH), 127.1 (CH), 80.8 (C), 77.5 (CH), 62.3
(CH), 39.5 (CH2), 28.1 (CH3). HPLC: Chiralpak AD column
(150 × 2.1 mm), hexane/i-propanol (97.5/2.5), 0.2 mL/min,
Rt = 13.9 min (R)-isomer, 18.8 min (S)-isomer.
References
(1) For recent reviews covering phase-transfer alkylation of
glycine imines see: (a) Maruoka, K.; Ooi, T. Chem. Rev.
2003, 103, 3013. (b) O’Donnell, M. J. Aldrichimica Acta
2001, 34, 3.
(2) (a) Lygo, B.; Allbutt, B.; James, S. R. Tetrahedron Lett.
2003, 44, 5629. (b) Lygo, B.; Andrews, B. I.; Crosby, J.;
Peterson, J. A. Tetrahedron Lett. 2002, 43, 8015. (c) Lygo,
B.; Humphreys, L. D. Tetrahedron Lett. 2002, 43, 6677.
(d) Lygo, B.; Crosby, J.; Peterson, J. A. Tetrahedron 2001,
57, 6447. (e) Lygo, B.; Crosby, J.; Lowdon, T. R.; Peterson,
J. A.; Wainwright, P. G. Tetrahedron 2001, 57, 2403.
(f) Lygo, B.; Crosby, J.; Lowdon, T. R.; Wainwright, P. G.
Tetrahedron 2001, 57, 2391. (g) Lygo, B.; Crosby, J.;
Peterson, J. A. Tetrahedron Lett. 1999, 40, 1385. (h) Lygo,
B.; Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595.
(3) For examples of asymmetric PTC alkylation of glycine
imines other than tert-butyl ester 1a see ref. 1 and: (a) Ooi,
T.; Tayama, E.; Maruoka, K. Angew. Chem. Int. Ed. 2003,
42, 579; amides. (b) Mazon, P.; Chinchilla, R.; Najera, C.;
Guillena, G.; Kreiter, R.; Gebbink, ; R, J. M. K.; van Koten,
G. Tetrahedron: Asymmetry 2002, 13, 2181; iso-propyl
ester. (c) Vyskocil, S.; Meca, L.; Tislerova, I.; Cisarova, I.;
Polasek, M.; Harutyunyan, S. R.; Belokon, Y. N.; Stead, R.
M. J.; Farrugia, L.; Lockhart, S. C.; Mitchell, W. L.;
Kocovsky, P. Chem.–Eur. J. 2002, 8, 4633; Ni salt of PBP
imine.
(4) For leading references to asymmetric PTC alkylations of
glycine imine1a not covered in ref.1 and ref.2, see: (a) Ooi,
T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2003, 125,
5139. (b) Mase, N.; Ohno, T.; Hoshikawa, N.; Ohishi, K.;
Morimoto, H.; Yoda, H.; Takabe, K. Tetrahedron Lett. 2003,
44, 4073. (c) Park, H. G.; Jeong, B. S.; Yoo, M. S.; Lee, J.
H.; Park, B. S.; Kim, M. J.; Jew, S. S. Tetrahedron Lett.
2003, 44, 3497. (d) Thierry, B.; Plaquevent, J. C.; Cahard,
D. Tetrahedron: Asymmetry 2003, 14, 1671. (e) Danelli, T.;
Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F.;
Tocco, G. Tetrahedron: Asymmetry 2003, 14, 461.
(f) Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 1515.
(g) Chen, G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.;
Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry
2001, 12, 1567. (h) O’Donnell, M. J.; Delgado, F.;
Dominguez, E.; de Blas, J.; Scott, W. L. Tetrahedron:
Asymmetry 2001, 12, 821.
Imine 2b¢¢¢ (38 mg) was then dissolved in THF (1 mL) and
treated with 15% aq citric acid (1 mL). The resulting solution
was stirred at r.t. for 3 h, then washed with Et2O (3 × 2 mL).
The aqueous layer was basified (sat. aq K2CO3) and
extracted with CHCl3 (3 × 5 mL). The combined organic
extracts were dried (MgSO4) and concentrated under
reduced pressure to afford amine 5 as a colourless oil (22
mg, 85%). 1H NMR (400 MHz, CDCl3): d = 7.36–7.27 (10
H, m, ArH), 6.92 (1 H, s, OCHPh2), 3.84 (1 H, dd, J = 6.5,
4.5 Hz, H-2), 2.80 (1 H, dd, J = 16.5, 4.5 Hz, H-3a), 2.72
(1 H, dd, J = 16.5, 6.5 Hz, H-3b), 1.88 (2 H, s, broad, NH2),
1.38 (9 H, s, t-Bu). 13C NMR (100 MHz, CDCl3): d = 173.5
(C), 170.3 (C), 139.8 (C), 128.6 (CH), 128.6 (CH), 128.2
(CH), 128.1 (CH), 127.2 (CH), 127.2 (CH), 81.5 (C), 77.8
(CH), 51.6 (CH), 39.8 (CH2), 28.1 (CH3)
(10) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997,
119, 12414.
Synlett 2004, No. 2, 326–328 © Thieme Stuttgart · New York