C O M M U N I C A T I O N S
Scheme 1
The palladium-catalyzed amination of aryl tosylates at 110 °C
was reported previously,19,22 but the mild additions of aryl tosylates
now allow for the amination of aryl tosylates under milder condi-
tions. Octylamine and phenyl tosylate underwent coupling at room
temperature in 76% yield after only 6 h in toluene in the presence
of 1 mol % PdCl2(PPF-t-Bu) and 2.5 equiv of NaO-t-Bu (eq 2). In
addition, reaction in the presence of 1 mol % of PPF-t-Bu and
commercially available PdCl2(PhCN)2 formed the arylamine in 72%
yield after 6 h. The increased rate of addition by the Pd(0) complex
of CyPF-t-Bu further increased the rate of amination. Octylamine
coupled with phenyl tosylate in 74% yield after 2 h at 25 °C.
The mild activation of aryl tosylates reported here has several
important consequences. First, the mild addition allows for pal-
ladium-catalyzed Kumada and amination reactions with unactivated
aryl tosylates at room temperature. Second, the rapid oxidative addi-
tion step shows that the scope of couplings of aryl tosylates can be
limited by transmetalation and reductive elimination15 instead of
oxidative addition. As a result, aryl tosylates may ultimately replace
the more expensive and less convenient aryl triflates in many
coupling applications.
Table 1. Pd-Catalyzed Couplings of ArOTs and ArMgBra
Acknowledgment. We thank the NIH (GM58108) for support,
Johnson-Matthey for a gift of PdCl2, Solvias AG for a gift of CyPF-
t-Bu, and Merck Research Laboratories for unrestricted support.
Supporting Information Available: Experimental methods, kinetic
data, procedures, and spectral data; X-ray crystallographic data for 5
and 6 (PDF); X-ray crystallographic files for 5 and 6 (CIF). This
References
(1) Stille, J. K.; Lau, K. S. Y. Acc. Chem. Res. 1977, 10, 434.
(2) Amatore, C.; Pfluger, F. Organometallics 1990, 9, 2276.
(3) Amatore, C.; Azzabi, M.; Jutand, A. J. Am. Chem. Soc. 1991, 113, 1670.
(4) Amatore, C.; Jutand, A.; M′Barki, M. A. Organometallics 1992, 11, 3009.
(5) Amatore, C.; Jutand, A.; Suarez, A. J. Am. Chem. Soc. 1993, 115, 9531.
(6) Portnoy, M.; Milstein, D. Organometallics 1993, 12, 1665.
(7) Hartwig, J. F.; Paul, F. J. Am. Chem. Soc. 1995, 117, 5373.
(8) Amatore, C.; Broeker, G.; Jutand, A.; Khalil, F. J. Am. Chem. Soc. 1997,
119, 5176.
a 1 mmol ArOTs and 2.0 equiv ArMgBr. b Isolated yields are an average
of two runs.
(9) Jutand, A.; Hii, K. K. M.; Thornton-Pett, M.; Brown, J. M. Organome-
tallics 1999, 18, 5367.
(10) Alcazar-Roman, L. M.; Hartwig, J. F.; Liable-Sands, L. M.; Guzei, I. A.
J. Am. Chem. Soc. 2000, 112, 4618.
rates in the presence of more weakly coordinating anions imply
that the more polar medium created by the added bromide and not
direct coordination of this ion to palladium accounts for the faster
rates. Consistent with this assertion, reactions in more polar solvents
in the absence of added halogen occurred faster. This large
acceleration of oxidative addition of an aryl electrophile to Pd(0)
in more polar solvents28 is unusual.2,10,11,29
These room-temperature oxidative additions of aryl tosylates al-
lowed us to develop palladium-catalyzed cross-couplings of aryl
tosylates under mild conditions. Results of the reactions of aryl
tosylates with aryl Grignard reagents are summarized in Table 1.
Reactions with 0.1-1.0 mol % Pd(dba)2 and PPF-t-Bu in toluene
at either room temperature or 80 °C produced the corresponding
biaryls in good yields in many cases. Most reactions were complete
within 24 h. Reactions with 0.01 mol % catalyst were slow and
gave lower yields of biaryl. Two equivalents of nucleophile were
required for complete conversion of the aryl tosylate due to com-
peting homocoupling of the Grignard reagent. Both electron-dona-
ting and -withdrawing aryl tosylates underwent reaction. Sterically
hindered aryl tosylates and Grignard reagents also reacted, although
in lower yields.
(11) Alcazar-Roman, L. M.; Hartwig, J. F. Organometallics 2002, 21, 491.
(12) Jutand, A.; Mosleh, A. Organometallics 1995, 14, 1810.
(13) Kobayashi, Y.; Mizojiri, R. Tetrahedron Lett. 1996, 37, 8531.
(14) Bolm, C.; Hildebrand, J. P.; Rudolph, J. Synthesis 2000, 7, 911.
(15) Zim, D.; Lando, V. R.; Dupont, J.; Monteiro, A. L. Org. Lett. 2001, 3,
3049.
(16) Fu¨rstner, A.; Leitner, A.; Mendez, M.; Krause, H. J. Am. Chem. Soc. 2002,
124, 13856.
(17) Fu¨rstner, A.; Leitner, A. Angew. Chem., Int. Ed. 2002, 41, 609.
(18) Erdik, E.; Eroglu, F. Synth. React. Inorg. Met.-Org. Chem. 2000, 30, 955.
(19) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1998, 120, 7369.
(20) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 1473.
(21) Kubota, Y.; Nakada, S.; Sugi, Y. Synlett 1998, 183.
(22) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald,
S. L. J. Am. Chem. Soc. 2003, 125, 6653.
(23) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.
(24) Togni, A.; Breutel, C.; Schnyder, A.; Spindler, F.; Landert, H.; Tijani, A.
J. Am. Chem. Soc. 1994, 116, 4062.
(25) Commercially available from Strem Chemicals; catalog no. 26-1201, 26-
0975.
(26) Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 3033.
(27) See Supporting Information for kinetic data.
(28) Sørensen, H. S.; Larsen, J.; Rasmussen, B. S.; Laursen, B.; Hansen, S.
G.; Skrydstrup, T.; Amatore, C.; Jutand, A. Organometallics 2002, 21,
5243.
(29) Amatore, C.; Jutand, A.; Khalil, F.; M’Barki, M. A.; Mottier, L.
Organometallics 1993, 12, 3168.
JA035835Z
9
J. AM. CHEM. SOC. VOL. 125, NO. 29, 2003 8705