Organic Letters
Letter
S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.;
Darvatkar, N.; Natarajan, S. R.; Baran, P. S. Science 2015, 348, 886.
(9) (a) Malacria, M. Chem. Rev. 1996, 96, 289. (b) Salom-Roig, X. J.;
Denes, F.; Renaud, P. Synthesis 2004, 12, 1903.
(10) Miura, K.; Ootsuka, K.; Hosomi, A. Synlett 2005, 20, 3151.
(11) Yamazaki, O.; Yamaguchi, K.; Yokoyama, M.; Togo, H. J. Org.
Chem. 2000, 65, 5440.
(12) Takami, K.; Mikami, S.; Yorimitsu, H.; Shinokubo, H.; Oshima, K.
Tetrahedron 2003, 59, 6627.
(13) Miura, K.; Tomita, M.; Yamada, Y.; Hosomi, A. J. Org. Chem.
2007, 72, 787.
(14) Fujita, K.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am. Chem.
Soc. 2001, 123, 3137.
Figure 2. Plausible mechanism for reductive radical cyclizations with an
Fe−phenanthroline system.
(15) Ekomie, A.; Lefevre, G.; Fensterbank, L.; Lacote, E.; Malacria, M.;
Ollivier, C.; Jutand, A. Angew. Chem., Int. Ed. 2012, 51, 6942.
(16) (a) Yanada, R.; Nishimori, N.; Matsumura, A.; Fujii, N.;
Takemoto, Y. Tetrahedron Lett. 2002, 43, 4585. (b) Yanada, R.; Koh,
Y.; Nishimori, N.; Matsumura, A.; Obika, S.; Mitsuya, H.; Fujii, N.;
Takemoto, Y. J. Org. Chem. 2004, 69, 2417.
required as a hydrogen donor in this transformation. We believe
that this method is an alternative approach to reductive radical
cyclizations and provides a synergistic exploration in iron radical
chemistry. Efforts toward expanding the scope of radical
precursor as well as developing a catalytic variant are currently
underway.
(17) (a) Baldwin, J. E.; MacKenzie Turner, S. C.; Moloney, M. G.
Tetrahedron 1994, 50, 9411. (b) Molander, G. A.; St. Jean, D. J. J. Org.
́
Chem. 2002, 67, 3861. (c) Millan, A.; Alvarez de Cienfuegos, L. A.;
Miguel, D.; Campana, A. G.; Cuerva, J. M. Org. Lett. 2012, 14, 5984.
(d) Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. Chem. Rev.
2014, 114, 5959.
(18) RMgX: (a) Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435.
(b) Hatakeyama, T.; Okada, Y.; Yoshimoto, Y.; Nakamura, M. Angew.
Chem., Int. Ed. 2011, 50, 10973. (c) Kim, J. G.; Son, Y. H.; Seo, J. W.;
Kang, E. J. Eur. J. Org. Chem. 2015, 2015, 1781. RLi: (d) Fujita, K.;
Yorimitsu, H.; Oshima, K. Synlett 2002, 2002, 337.
(19) (a) Nguyen, J. D.; D'Amato, E. M.; Narayanam, J. M. R.;
Stephenson, C. R. J. Nat. Chem. 2012, 4, 854. (b) Kim, H.; Lee, C.
Angew. Chem., Int. Ed. 2012, 51, 12303. (c) Revol, G.; McCallum, T.;
Morin, M.; Gagosz, F.; Barriault, L. Angew. Chem., Int. Ed. 2013, 52,
13342. (d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
2013, 113, 5322.
(20) This condition also proved to be efficient in the hydro-
dehalogenation reaction of alkyl iodides without a pendent olefin,
affording the reduced products in good yield (see Scheme S1).
(21) Iodoalkyne (S3) and iodoallene (S5) also participated as radical
acceptors to provide pyrolidines with side products. See the Supporting
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and characterization data for
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(22) (a) Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Org. Lett. 2012,
14, 672. (b) Ruiz Espelt, L.; Wiensch, E. M.; Yoon, T. P. J. Org. Chem.
2013, 78, 4107. (c) Terrett, J. A.; Clift, M. D.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2014, 136, 6858.
This study was supported by the Ministry of Education, Science
and Technology, National Research Foundation (Grant Nos.
NRF-2012R1A1A1044770 and NRF-2015R1D1A1A01060349)
(23) Deuterium experiments were tested with deuterium oxide in
REFERENCES
■
(1) (a) Gu, H.; Shen, L.; Zhong, Z.; Niu, X.; Ge, H.; Zhou, Y.; Xiao, S.
Ind. Eng. Chem. Res. 2014, 53, 13006. (b) Gonzalez-de-Castro, A.; Xiao,
J. J. Am. Chem. Soc. 2015, 137, 8206.
(2) (a) Mayer, M. F.; Hossain, M. M. J. Org. Chem. 1998, 63, 6839.
(b) Gopalaiah, K. Chem. Rev. 2013, 113, 3248. (c) Racys, D. T.;
Warrilow, C. E.; Pimlott, S. L.; Sutherland, A. Org. Lett. 2015, 17, 4782.
(3) (a) Sherry, B.; Furstner, A. Acc. Chem. Res. 2008, 41, 1500. (b) Jana,
R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417. (c) Bauer, I.;
Knolker, H.-J. Chem. Rev. 2015, 115, 3170.
(4) Schlesener, C. J.; Amatore, C.; Kochi, J. K. J. J. Am. Chem. Soc. 1984,
106, 3567.
(5) Harvey, P. J.; Schoemaker, H. E.; Bowen, R. M.; Palmer, J. M. FEBS
Lett. 1985, 183, 13.
(24) (a) Braterman, P. S.; Song, J. I.; Peacock, R. D. Inorg. Chem. 1992,
31, 555. (b) Tribollet, J.; Galle, G.; Jonusauskas, G.; Deldicque, D.;
Tondusson, M.; Letard, J. F.; Freysz, E. Chem. Phys. Lett. 2011, 513, 42.
(25) (a) Petrat, F.; Paluch, S.; Dogruoz, E.; Dorfler, P.; Kirsch, M.;
Korth, H.-G.; Sustmann, R.; de Groot, H. J. Biol. Chem. 2003, 278,
46403. (b) Yi, H.; Jutand, A.; Lei, A. Chem. Commun. 2015, 51, 545.
(26) The [Fe(phen)3]2+ formation was checked by ESI-MS and time-
dependent UV−vis absorption spectroscopy. See the Supporting
(27) Ballardini, R.; Varani, G.; Indelli, M. T.; Scandola, F.; Balzani, V. J.
Am. Chem. Soc. 1978, 100, 7219.
(6) Jui, N. T.; Lee, E. C. Y.; MacMillan, D. W. C. J. Am. Chem. Soc.
2010, 132, 10015.
(7) (a) Demartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008,
130, 11546. (b) Cavanagh, C. W.; Aukland, M. H.; Hennessy, A.;
Procter, D. J. Chem. Commun. 2015, 51, 9272. (c) Cavanagh, C. W.;
Aukland, M. H.; Laurent, Q.; Hennessy, A.; Procter, D. J. Org. Biomol.
Chem. 2016, 14, 5286.
(8) (a) Ashby, E. C.; Wiesemann, T. L. J. Am. Chem. Soc. 1974, 96,
7117. (b) Gui, J.; Pan, C.-M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel,
D
Org. Lett. XXXX, XXX, XXX−XXX