Mikhailopulo et al.
viz., (i) transformation of natural 2′-deoxyribonucleosides
or less serviceable ribonucleosides to the desired dideoxy-
fluoro derivatives11-15 and (ii) coupling of heterocyclic
bases with suitable furanose derivatives containing the
C3-fluorine atom or the C3-xylo-hydroxyl group, which
may be replaced by a fluorine atom6,11,16-21 (for a recent
review, see ref 22). The most important advantage of the
first approach lies in the presence of the requisite
â-configuration at the anomeric center. Nonetheless, the
preparation of FLT from thymidine through the inter-
mediary O2,3′-anhydro derivative is probably the only
expedient example.23
The main limitation of the second approach is the poor
stereoselectivity of the glycosidic bond formation employ-
ing suitable derivatives of 2,3-dideoxy-3-fluoro-D-erythro-
pentofuranose as glycosylating agents. On the other
hand, the use of the universal glycosylating agents makes
possible the preparation of a rather broad spectrum of
nucleosides having both natural and modified heterocy-
clic bases. The transglycosylation reaction employing the
5′-O-acylated FLT as glycosyl donor and purine bases as
glycosyl acceptors24 combines both of the above ap-
proaches.
essential improvement of the â-stereoselectivity of the
convergent methods. The elegant stereocontrolled syn-
theses of pyrimidine 2′,3′-dideoxy-â-D-nucleosides includ-
ing AZT and FLT based on the intramolecular glycosyl-
ation concept have recently been described.32-34
As a continuation of our efforts in the synthesis of 2,3-
dideoxy-3-fluoro-D-erythro-pentofuranosides,12,18,20,24 we
describe a new approach for the preparation of these
compounds by coupling methyl 5-O-benzoyl-2-chloro-2,3-
dideoxy-3-fluoro-â-D-ribofuranoside (5) with persilylated
thymine, N6-benzoyladenine, and N4-benzoylcytosine fol-
lowed by the radical-mediated hydrodehalogenation of
the prepared nucleosides and subsequent deprotection.
We also demonstrate that the dehalogenation of 2′-chloro-
2′,3′-dideoxy-3′-fluoro-D-ribonucleosides with 1 M MeONa/
MeOH under reflux for 1-5 h afforded 2′,3′-didehydro-
2′,3′-dideoxy-2′-chloro-D-pentofuranosyl nucleosides as
the principal products. Similar easy elimination of HF
was also observed in the case of 2′-azido-2′,3′-dideoxy-
3′-fluoro-â-D-ribofuranosides of thymine (17) and adenine
(20). The role of conformational peculiarities of 2′-chloro-
2′,3′-dideoxy-3′-fluoro-D-ribonucleosides as well as 17 and
20 in the observed exclusive elimination of HF is dis-
cussed.
The use of pentofuranosyl sugars containing at the C2-
atom an R-arranged iodine,25,26 phenylsulfenyl,27,28 phen-
ylselenenyl,21,29 or m-trifluoromethylbenzoyl group30,31 as
the transient anomeric control group, which can be
removed after the glycosidic bond formation, led to an
The conformational behavior of the various pentofura-
noses is discussed in terms of the anomeric effect (AE)
and an alternative model of the gauche effect (GE).
Resu lts a n d Discu ssion
(11) Herdewijn, P.; Van Aerschot, A.; Kerremans, L. Nucleosides
Nucleotides 1989, 8, 65-96.
Ch em ica l Tr a n sfor m a tion s. The key glycosylating
riboside 5 was prepared from methyl 3-deoxy-5-O-benzyl-
3-fluoro-2-O-tosyl-â-D-arabinofuranoside (1)35 in three
steps using two different sequences of the same chemical
reactions (Scheme 1). Two-step substitution of the ben-
zoyl group for the benzyl group followed by replacement
of the tosyloxy group by a chlorine atom gave the riboside
5 in 51% combined yield. The reversed sequence of the
chemical transformations resulted in a somewhat lower
yield (45%) of the desired 5. The reaction of the riboside
5 with persilylated thymine in the presence of trimeth-
ylsilyl triflate [(TMS)Tfl] (1.0:2.0:3.0, mol) in refluxing
acetonitrile for 5 h followed by chromatography afforded
a mixture of the R- and â-anomers 7a ,b (the ratio of R to
â was 1:2 according to 1H NMR) in 49% yield and a
mixture of the methyl glycosides 5 and 6 in 19% yield.
This result revealed a close resemblance with the previ-
ously described coupling of methyl 2-azido-5-O-benzoyl-
2,3-dideoxy-3-fluoro-â-D-ribofuranoside with persilylated
thymine under similar conditions.35 Treatment of 7a ,b
with methanolic ammonia and subsequent chromatog-
raphy on silica gel afforded 1-(2-chloro-2,3-dideoxy-3-
fluoro-â-D-ribofuranosyl)thymine (10b) and its R-anomer
10a in 55% and 28% yield, respectively.
(12) Zaitseva, G. V.; Kvasyuk, E. I.; Poopeiko, N. E.; Kulak, T. I.;
Pashinnik, V. E.; Tovstenko, V. I.; Markovskii, L. M.; Mikhailopulo, I.
A. Bioorg. Chem. (Moscow) 1988, 14, 1275-1281; Chem. Abstr. 1989,
111, 7722.
(13) Green, K.; Blum, D. M. Tetrahedron Lett. 1991, 32, 2091-2094.
(14) Seela, F.; Muth, H.-P. Helv. Chim. Acta 1991, 74, 1081-1090.
(15) Marchand, A.; Mathe, C.; Imbach, J .-L.; Gosselin, G. Nucleo-
sides, Nucleotides, Nucleic Acids 2000, 19, 205-217.
(16) Fleet, G. W. J .; Son, J . C.; Derome, A. E. Tetrahedron 1988,
44, 625-636.
(17) Motawia, M. S.; Pedersen, E. B. Liebigs Ann. Chem. 1990,
1137-1139.
(18) Mikhailopulo, I. A.; Pricota, T. I.; Poopeiko, N. E.; Klenitskaya,
T. V.; Khripach, N. B. Synthesis 1993, 700-704.
(19) Hager, M. W.; Liotta, D. C. Tetrahedron Lett. 1992, 33, 7083-
7086.
(20) Poopeiko, N. E.; Khripach, N. B.; Kazimierczyk, Z.; Balzarini,
J .; De Clercq, E.; Mikhailopulo, I. A. Nucleosides Nucleotides 1997,
16, 1083-1086.
(21) Poopeiko, N.; Fernandez, R.; Barrena, M. I.; Castillon, S.;
Fornies-Camer, J .; Cardin, C. J . J . Org. Chem. 1999, 64, 1375-1379.
(22) Viani, F. In Enantiocontrolled Synthesis of Fluoro-Organic
Compounds: Stereochemical Challenges and Biomedical Targets;
Soloshonok, V. A., Ed.; J ohn Wiley & Sons Ltd.: New York, 1999;
Chapter 13, pp 419-449.
(23) Huang, J .-T.; Chen, L.-C.; Wang, L.; Kim, M.-H.; Warshaw, J .
A.; Armstrong, D.; Zhu, Q.-Y.; Chou, T.-C.; Watanabe, K. A.; Matulic-
Adamic, J .; Su, T.-L.; Fox, J . J .; Polsky, B.; Baron, P. A.; Gold, J . W.
M.; Hardy, W. D.; Zuckerman, E. J . Med. Chem. 1991, 34, 1640-1646.
(24) Kvasyuk, E. I.; Zaitseva, G. V.; Savochkina, L. P.; Chidgeavadze,
Z. G.; Beabealashvilli, R. Sh.; Langen, P.; Mikhailopulo, I. A. Bioorg.
Chem. (Moscow) 1989, 15, 781-795; Chem. Abstr. 1990, 112, 3274.
(25) Kim, C. U.; Misco, P. F. Tetrahedron Lett. 1992, 33, 5733-5736.
(26) McDonald, F. E.; Gleason, M. M. Angew. Chem., Int. Ed. Engl.
1995, 34, 350-352.
Along the same line, the condensation of silylated N6-
benzoyladenine with methyl glycoside 5 in the presence
of excess SnCl4 (2.0:1.0:5.0, mol) in a refluxing acetoni-
(27) Wang, J .; Wurster, J . A.; Wilson, L. J .; Liotta, D. C. Tetrahedron
Lett. 1993, 34, 4881-4884.
(28) Kawakami, K.; Ebata, T.; Kozeki, K.; Matsushita, H.; Naoi, Y.;
Itoh, K. Chem. Lett. 1990, 8, 1459-1462.
(32) J ung, M. E.; Castro, C. J . Org. Chem. 1993, 58, 807-808.
(33) Sujino, K.; Sugimura, H. Tetrahedron Lett. 1994, 35, 1883-
1886.
(34) Lipshnitz, B. H.; Stevens, K. L.; Lowe, R. F. Tetrahedron Lett.
1995, 36, 2711-2712.
(35) Mikhailopulo, I. A.; Poopeiko, N. E.; Pricota, T. I.; Sivets, G.
G.; Kvasyuk, E. I.; Balzarini, J .; De Clercq, E. J . Med. Chem. 1991,
34, 2195-2202.
(29) Beach, J . W.; Kim, H. O.; J eong, L. S.; Nampalli, S.; Islam, Q.;
Ahn, S. K.; Babu, J . R.; Chu, C. K. J . Org. Chem. 1992, 57, 3887-
3894.
(30) Huang, Z.; Schneider, K. C.; Benner, S. A. J . Org. Chem. 1991,
56, 3869-3882.
(31) Park, M.; Rizzo, C. J . J . Org. Chem. 1996, 61, 6092-6093.
5898 J . Org. Chem., Vol. 68, No. 15, 2003