Organic Letters
Letter
Lipshultz, J. M.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54,
7929.
(8) Noble, A.; McCarver, S. J.; MacMillan, D. W. C. J. Am. Chem. Soc.
(19) This reversible addition may also have a kinetic component
governed by the Bell−Evans−Polanyi principle in which the difference
in activation barriers for the formation of 15 and 16 correlates to the
difference in thermodynamic stability between 15 and 16.
2015, 137, 624.
(20) (a) Echt, D. S.; Liebson, P. R.; Mitchell, L. B.; Peters, R. W.;
Obias-Manno, D.; Barker, A. H.; Arensberg, D.; Baker, A.; Friedman, L.;
Greene, H. L.; Huther, M. L.; Richardson, D. W. CAST Investigators. N.
Engl. J. Med. 1991, 324, 781. (b) Harrison, D. C.; Winkle, R.; Sami, M.;
Mason, J. Am. Heart J. 1980, 100, 1046.
(21) (a) Dillon, J. L.; Spector, R. H. (Bristol-Myers Company, USA).
U.S. Patent 4,800,226, January 24, 1989. (b) Madding, G. D. (Mead
Johnson & Company, USA). U.S. Patent 4,394,507, July 19, 1983.
(22) Photoredox chemistry has been used in industrial-scale
applications. For more information, see: (a) Yayla, H. G.; Peng, F.;
Mangion, I. K.; McLaughlin, M.; Campeau, L.-C.; Davies, I. W.;
DiRocco, D. A.; Knowles, R. R. Chem. Sci. 2016, 7, 2066. (b) Ciriminna,
R.; Delisi, R.; Xu, Y.-J.; Pagliaro, M. Org. Process Res. Dev. 2016, 20, 403.
(c) Porta, R.; Benaglia, M.; Puglisi, A. Org. Process Res. Dev. 2016, 20, 2.
(d) DiRocco, D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D. V.;
Tudge, M. Angew. Chem., Int. Ed. 2014, 53, 4802. (e) Tucker, J. W.;
Zhang, Y.; Jamison, T. F.; Stephenson, C. R. J. Angew. Chem., Int. Ed.
(9) Le, C. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 11938.
(10) Melchiorre and co-workers as well as Nicewicz and co-workers
have reported intramolecular olefin additions as well as intermolecular
heteroatom couplings with similar regioselectivity: (a) Hepburn, H. B.;
Melchiorre, P. Chem. Commun. 2016, 52, 3520. (b) Arceo, E.; Montroni,
E.; Melchiorre, P. Angew. Chem., Int. Ed. 2014, 53, 12064. (c) Wilger, D.
J.; Grandjean, J.-M. M.; Lammert, T. R.; Nicewicz, D. A. Nat. Chem.
2014, 6, 720. (d) Nguyen, T. M.; Manohar, N.; Nicewicz, D. A. Angew.
Chem., Int. Ed. 2014, 53, 6198. (e) Nicewicz, D. A.; Hamilton, D. S.
Synlett 2014, 25, 1191. (f) Perkowski, A. J.; Nicewicz, D. A. J. Am. Chem.
Soc. 2013, 135, 10334. (g) Nguyen, T. M.; Nicewicz, D. A. J. Am. Chem.
Soc. 2013, 135, 9588.
(11) (a) Devery, J. J., III; Douglas, J. J.; Nguyen, J. D.; Cole, K. P.;
Flowers, R. A., III; Stephenson, C. R. J. Chem. Sci. 2015, 6, 537.
(b) Keylor, M. H.; Park, J. E.; Wallentin, C.-J.; Stephenson, C. R. J.
Tetrahedron 2014, 70, 4264. (c) Wallentin, C.-J.; Nguyen, J. D.;
Stephenson, C. R. J. Chimia 2012, 66, 394. (d) Wallentin, C.-J.; Nguyen,
J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134,
8875. (e) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.;
Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160.
2012, 51, 4144. (f) Andrews, R. S.; Becker, J. J.; Gagne,
Chem., Int. Ed. 2012, 51, 4140.
́
M. R. Angew.
(12) Several regioselective, intermolecular C−C bond formation
processes have been reported previously, but these typically suffer from
harsh reaction conditions or specific prefunctionalization. For examples,
see: (a) Xu, B.; Li, M.-L.; Zuo, X.-D.; Zhu, S.-F.; Zhou, Q.-L. J. Am.
Chem. Soc. 2015, 137, 8700. (b) Shih, Y.-C.; Tsai, P.-H.; Hsu, C.-C.;
Chang, C.-W.; Jhong, Y.; Chen, Y.-C.; Chien, T.-C. J. Org. Chem. 2015,
80, 6669. (c) Schinkel, M.; Wang, L.; Bielefeld, K.; Ackermann, L. Org.
Lett. 2014, 16, 1876. (d) Cordier, C. J.; Lundgren, R. J.; Fu, G. C. J. Am.
Chem. Soc. 2013, 135, 10946. (e) Pan, S.; Matsuo, Y.; Endo, K.; Shibata,
T. Tetrahedron 2012, 68, 9009. (f) Bi, H.-P.; Zhao, L.; Liang, Y.-M.; Li,
C.-J. Angew. Chem., Int. Ed. 2009, 48, 792. (g) Boto, A.; De Leon
́
, Y.;
Gallardo, J. A.; Hernandez, R. Eur. J. Org. Chem. 2005, 2005, 3461.
́
(h) Davies, H. M. L.; Venkataramani, C.; Hansen, T.; Hopper, D. W. J.
Am. Chem. Soc. 2002, 125, 6462. (i) Davies, H. M. L.; Hansen, T.;
Hopper, D. W.; Panaro, S. A. J. Am. Chem. Soc. 1999, 121, 6509.
(j) Martin, S. F.; Barr, K. J. J. Am. Chem. Soc. 1996, 118, 3299.
(k) Hernandez, A. S.; Thaler, A.; Castells, J.; Rapoport, H. J. Org. Chem.
1996, 61, 314. (l) Lochead, A. W.; Procter, G. R.; Caton, M. P. L. J.
Chem. Soc., Perkin Trans. 1 1984, 2477. (m) Radwan, A. S.; Melek, F. R.;
Negm, S. J. Prakt. Chem. 1980, 322, 475.
(13) Given the complex mixture of diastereomers and rotamers present
in 4, unambiguous NMR structure elucidation of regioselectivity was
(14) For other instances of “cesium effects”, see: (a) Lee, M.; Chang, S.
Tetrahedron Lett. 2000, 41, 7507. (b) Salvatore, R. N.; Nagle, A. S.;
Schmidt, S. E.; Jung, K. W. Org. Lett. 1999, 1, 1893. (c) Marcoux, J.-F.;
Doye, S.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 10539. (d) Rauhe,
B. R., Jr.; McLarnon, F. R.; Cairns, E. J. J. Electrochem. Soc. 1995, 142,
1073.
(15) Polar solvents generally performed well due to their capacity to
stabilize charged and radical intermediates.
(16) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.,
Jr.; Milliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712−5719.
(17) Acyclic acids bearing an α-heteroatom (e.g., N-Boc-glycine) as
well as secondary alicyclic acids (e.g., cyclohexanecarboxylic acid) also
work using this methodology albeit with lower yields.
(18) Reversible addition of radicals to olefins has been studied
extensively. For example, see: (a) Babiarz, J. E.; Cunkle, G. T.; DeBellis,
A. D.; Eveland, D.; Pastor, S. D.; Shum, S. P. J. Org. Chem. 2002, 67,
6831. (b) Tanner, D. D.; Zhang, L. J. Am. Chem. Soc. 1994, 116, 6683.
(c) Julia, M. Acc. Chem. Res. 1971, 4, 386 Additionally, when the
photoredox coupling of 2 and trans-β-methylstyrene (8f) was run to
partial conversion, recovered 8f had partially isomerized to provide a
mixture of trans- and cis-β-methylstyrene, which may indicate reversible
olefin addition during the reaction.
3497
Org. Lett. 2016, 18, 3494−3497