The availability of appropriately substituted â-amino
acid monomers4 is one factor that dictates the pace of
â-peptide foldamer research. Convenient synthetic routes
for monomers that are predisposed to form helical
structures5 have accelerated the pace of discoveries
involving â-peptide helices.5k In contrast, many questions
involving â-peptide sheet structure remain unanswered.
For example, what side chains, side-chain orientations,
and side chain-side chain pairings are required for
hairpin structure in parallel and in antiparallel systems?
Is it possible to engineer a â-peptide hairpin that is
structured in water? Progress in â-peptide sheet research
has lagged behind the study of â-peptide helix structure
because a general, scalable synthesis of syn-R,â-dialkyl
â-amino acids with protein-like side chains has not been
described.
P r ep a r a tion of P r otected syn -r,â-Dia lk yl
â-Am in o Acid s Th a t Con ta in P ola r Sid e
Ch a in F u n ction a lity†
J oseph M. Langenhan and Samuel H. Gellman*
Department of Chemistry, University of Wisconsin,
Madison, Wisconsin 53706-1396
gellman@chem.wisc.edu
Received May 5, 2003
Abstr a ct: We report the synthesis of syn-R,â-dialkyl â-ami-
no acid derivatives suitably protected for solid-phase syn-
thesis that give rise to residues containing positively charged
lysine-like side chains. These amino acids, as well as syn-
R,â-dialkyl â-amino acids that contain diverse hydrophobic
side chains, are prepared in good de and ee. The key step in
this route involves Davies’s protocol for the conjugate
addition of a chiral lithium amide to R,â-unsaturated tert-
butyl esters (Davies, S. G.; Ichihara, O.; Walters, I. A. S. J .
Chem. Soc., Perkin Trans. 1 1994, 9, 1141). syn-R,â-Dialkyl
â-amino acids are interesting building blocks because of their
sheet-forming propensity and because of their presence in
bioactive compounds.
A synthesis that fit several criteria was required. (1)
For convenience, the synthesis should afford products in
high diastereomeric and enantiomeric purity in every
case. (2) The route must readily provide diverse hydro-
phobic side chains in both the R and â positions of the
amino acid. (3) The synthetic methodology must allow
the incorporation of polar side chains that confer water
solubility on â-peptide oligomers. These features are
critical for our long-range goal of studying â-peptide sheet
secondary structure in water.
Methodologies that provide a limited set of syn-R,â-
dialkyl â-amino acids are known.6 For instance, L-aspartic
acid has been used to generate syn-R,â-dialkyl â-amino
acids,3a,b,d,7 and ester enolates have been used in conjunc-
tion with tert-butylsulfinyl imines to afford these com-
pounds.8 The alkylation of â3-amino acids, which are
readily obtained from R-amino acids via Arndt-Eistert
homologation,5a was investigated as a means by which
to obtain syn-R,â-dialkyl â-amino acids.9 Unfortunately,
these alkylations are not very diastereoselective, and in
syn-R,â-Dialkyl â-amino acids are relatively rare in
Nature but have been identified in several important
metabolites. For example, dolastatins 11 and 12 contain
(2S,3R)-2-methyl-3-aminopentanoic acid within a cyclic
depsipeptide.1 The dolastatins inhibit the growth of
murine lymphocytic leukemia cells.1b,c Majusculamide C,
a related cyclic depsipeptide, is cytotoxic and exhibits
fungicidal activity against several plant pathogens.2 The
importance of syn-R,â-dialkyl â-amino acids is not limited
to their biological occurrence. syn-R,â-Dialkyl â-amino
acids have proven useful in the development of sheet-
forming â-peptide foldamers.3 The relative configuration
of the CR and Câ alkyl substituents of these amino acids
enforces an anti NCâ-CRC(dO) torsion angle, which
corresponds to an extended conformation of the â-amino
acid backbone atoms.
(4) For reviews, see: (a) Sibi, M. P.; Manyem, S. Tetrahedron 2002,
58, 7991. (b) J uaristi, E., Ed. Enantioselective synthesis of â-amino
acids; 1st ed.; Wiley-VCH: New York, 1997. (c) Cole, D. C. Tetrahedron
1994, 50, 9517.
(5) For example, see: (a) Podlech, J .; Seebach, D. Liebigs Ann. 1995,
1217. (b) Appella, D. H.; LePlae, P. R.; Raguse, T. L.; Gellman, S. H.
J . Org. Chem. 2000, 65, 4766. (c) Wang, X.; Espinosa, J . F.; Gellman,
S. H. J . Am. Chem. Soc. 2000, 122, 4821. (d) LePlae, P. R.; Umezawa,
N.; Lee, H.-S.; Gellman, S. H. J . Org. Chem. 2001, 66, 5629. (e) Porter
E. A.; Wang, X.; Schmitt, M. A.; Gellman, S. H. Org. Lett. 2002, 4,
3317. (f) Woll, M. G.; Fisk, J . D.; LePlae, P. R.; Gellman, S. H. J . Am.
Chem. Soc. 2002, 124, 12447. (g) Lee, H.-S.; Park, J .-S.; Kim, B. M.;
Gellman, S. H. J . Org. Chem. 2003, 68, 1575. (h) Schinnerl, M.; Murray,
J . K.; Langenhan, J . M.; Gellman, S. H. Eur. J . Org. Chem. 2003, 721.
(i) Wipf, P.; Wang, X. Tetrahedron Lett. 2000, 41, 8747. (j) Berkessel,
A.; Glaubitz, K.; Lex, J . Eur. J . Org. Chem. 2002, 2948. (k) Cheng, R.
P.; Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001, 101, 3219.
(6) For methodologies not mentioned in the text, see: Taggi, A. E.;
Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. J . Am.
Chem. Soc. 2002, 124, 6626. Dudding, T.; Hafez, A. M.; Taggi, A. E.;
Wagerle, T. R.; Lectka, T. Org. Lett. 2002, 4, 387; Hart, D. J .; Lee,
C.-S.; Pirkle, W. H.; Hyon, M. H.; Tsipouras, A. J . Am. Chem. Soc.
1986, 108, 6054. Cimarelli, C.; Palmieri, G. J . Org. Chem. 1996, 61,
5557. J uaristi, E.; Escalante, J . J . Org. Chem. 1993, 58, 2282. J uaristi,
E.; Escalante, J ., Lamatsch, B., Seebach, D. J . Org. Chem. 1992, 57,
2396. Miyabe, H.; Fujii, K.; Naito, T. Org. Lett. 1999, 1, 569. Miyabe,
H.; Fujii, K.; Naito, T. Org. Biomol. Chem. 2003, 1, 381. Minter, A. R.;
Fuller, A. A.; Mapp, A. K. J . Am. Chem. Soc. 2003, 125, 6846.
(7) J efford, C. W.; McNulty, J . Helv. Chim. Acta 1994, 77, 2142.
(8) (a) Tang, T. P.; Ellman, J . A. J . Org. Chem. 1999, 64, 12. (b)
Tang, T. P., Ellman, J . A. J . Org. Chem. 2002, 67, 7819.
† Dedicated to Professor E. J . Walsh (Allegheny College) on the
occasion of his 68th birthday.
(1) (a) Bates, R. B.; Brusoe, K. G.; Burns, J . J .; Caldera, S.; Cui, W.;
Gangwar, S.; Gramme, M. R.; McClure, K. J .; Rouen, G. P.; Schadow,
H.; Stessman, C. C.; Taylor, S. R.; Vu, V. H.; Yarick, G. V.; Zhang, J .;
Pettit, G. R.; Bontems, R. J . Am. Chem. Soc. 1997, 119, 2111. (b) Pettit,
G. R.; Kamano, Y.; Kizu, H.; Dufresne, C.; Herald, C. L.; Bontems, R.
J .; Schmidt, J . M.; Boettner, F. E.; Nieman, R. A. Heterocycles 1989,
28, 553. (c) Bai, R.; Verdier-Pinard, P.; Gangwar, S.; Stessman, C. C.;
McClure, K. J .; Sausville, E. A.; Pettit, G. R.; Bates, R. B.; Hamel, E.
Mol. Pharm. 2001, 59, 462.
(2) Carter, D. C.; Moore, R. E.; Mynderse, J . S.; Niemczura, W. P.;
Todd, J . S. J . Org. Chem. 1984, 49, 236.
(3) (a) Krauthauser, S.; Christianson, L. A.; Powell, D. R.; Gellman,
S. H. J . Am. Chem. Soc. 1997, 119, 11719. (b) Chung, Y. J .; Chris-
tianson, L. A.; Stanger, H. E.; Powell, D. R.; Gellman, S. H. J . Am.
Chem. Soc. 1998, 120, 10555. (c) Seebach, D.; Abele, S.; Gademann,
K.; J aun, B. Angew. Chem., Int. Ed. 1999, 38, 1595. (d) Chung, Y. J .;
Huck, B. R.; Christianson, L. A.; Stanger, H. E.; Krauthauser, S.;
Powell, D. R.; Gellman, S. H. J . Am. Chem. Soc. 2000, 122, 3995. (e)
Daura, X.; Gademann, K.; Schafer, H.; J aun, B.; Seebach, D.; Gun-
steren, W. F. v. J . Am. Chem. Soc. 2001, 123, 2393. (f) Lin, J .-Q.; Luo,
S.-W.; Wu, Y.-D. J . Comput. Chem. 2002, 23, 1551.
10.1021/jo034583h CCC: $25.00 © 2003 American Chemical Society
Published on Web 07/04/2003
6440
J . Org. Chem. 2003, 68, 6440-6443