W. Zhang et al. / Tetrahedron Letters 52 (2011) 6122–6126
6125
NH2
O
+
O
Bn
O
N
Bn
N
(1) 4 A MS, CH2Cl2,
r.t. 2 hrs
N
Bn
10
or
n
1a
+
+
CHO
.
(2) BF3 OEt2, 4 A MS,
N
H
N
H
CH2Cl2, r.t. 2 hrs
NO2
NO2
+
O
N
exo-5h n = 1
exo-6a n = 2
endo-6a
Bn
NO2
2a
9
Scheme 4. Reactions of arylimine with cyclic enamides.
In conclusion, we have developed an efficient method for the
synthesis of hexahydropyrrolo[3,2-c]quinolin-2-ones and
CHO
NH2
.
MS
H
BF3 OEt2
+
hexahydropyridino[3,2-c]quinolin-2-ones by one-pot two-step
aza-Diels–Alder reactions of N-arylimines, produced in situ by the
condensation of anilines and benzaldehydes, with the cyclic ena-
mides, produced in situ from BF3ÁOEt2-promoted dehydration of
5-hydroxypyrrolidin-2-ones and 6-hydroxypiperidin-2-ones. The
reaction afforded hexahydropyrrolo[3,2-c]quinolin-2-ones as a sin-
gle exo-diastereomer in most cases and afforded hexahydropyridi-
no[3,2-c]quinolin-2-ones as a mixture of endo- and exo-isomers
favoring the endo-diastereomer.
N
C
CH2Cl2
r.t.
NO2
2a
1a
NO2
H
H
N
C
N
F3B
F3B
NO2
NO2
.
BF3 OEt2
O
OH
N
O
CH2Cl2
MS
r.t.
N
Acknowledgment
Ph
Ph
3a
We are grateful to the National Nature Science Foundation of
China (Grant No. 20872056) for the financial support.
O
Ph
O
O
Ph
Ph
N
N
-H+
N
Supplementary data
N
N
N
Supplementary data associated with this Letter can be found, in
H
H
BF3
NO2
NO2
NO2
5a
References and notes
Scheme 5. A plausible reaction mechanism of three-component aza-Diels–Alder
reaction promoted by BF3ÁOEt2 in DCM.
1. (a) Michael, J. P. Nat. Prod. Rep. 2007, 24, 223; (b) Musiol, R.; Jampilek, J.; Kralova,
K.; Richardson, D. R.; Kalinowski, D.; Podeszwa, B.; Finster, J.; Niedbala, H.; Palka,
A.; Polanski, J. Bioorg. Med. Chem. 2007, 15, 1280; (c) Chilin, A.; Marzano, C.;
Guiotto, A.; Baccichetti, F.; Carlassare, F.; Bordin, F. J. Med. Chem. 2002, 45, 1146;
(d) Xia, Y.; Yang, Z.-Y.; Xia, P.; Bastow, K. F.; Tachibana, Y.; Kuo, S.-C.; Hamel, E.;
Hackl, T.; Lee, K. H. J. Med. Chem. 1998, 41, 1155; (e) Paris, D.; Cottin, M.;
Demonchaux, P.; Augert, G.; Dupassieux, P.; Lenoir, P.; Peck, M. J.; Jasserand, D. J.
Med. Chem. 1995, 38, 669; (f) Carling, R. W.; Leeson, P. D.; Moseley, A. M.; Smith,
J. D.; Saywell, K.; Trickelbank, M. D.; Kemp, J. A.; Marshall, G. R.; Foster, A. C.;
Grimwood, S. Bioorg. Med. Chem. Lett. 1993, 3, 65; (g) Carling, R. W.; Leeson, P. D.;
Moseley, A. M.; Baker, R.; Foster, A. C.; Grimwood, S.; Kemp, J. A.; Marshall, G. R.
J. Med. Chem. 1992, 35, 1942; (h) Johnson, J. V.; Rauckman, S.; Baccanari, P. D.;
Roth, B. J. Med. Chem. 1989, 32, 1942.
2. For leading recent references, see: (a) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.;
Jacobsen, E. N. Science 2010, 327, 986; (b) Xie, M.; Chen, X.; Zhu, Y.; Gao, B.; Lin,
L.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2010, 49, 3799; (c) Bergonzini, G.;
Gramigna, L.; Mazzanti, A.; Fochi, M.; Bernardi, L.; Ricci, A. Chem. Commun. 2010,
46, 327; (d) Burai, R.; Ramesh, C.; Shorty, M.; Curpan, R.; Bologa, C.; Sklar, L. A.;
Oprea, T.; Prossnitz, E. R.; Arterburn, J. B. Org. Bio. Chem. 2010, 8, 2252; (e) Liu,
H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. J. Am. Chem. Soc. 2009, 131,
4598; (f) Desimoni, G.; Faita, G.; Mella, M.; Toscanini, M.; Boiocchi, M. Eur. J. Org.
Chem. 2009, 2627; (g) Kouznetsov, V. V. Tetrahedron 2009, 65, 2721; (h)
Barluenga, J.; Mendoza, A.; Rodriguez, F.; Fananas, F. J. Chem. Eur. J. 2008, 14,
10892; (i) Shindoh, N.; Tokuyama, H.; Takemoto, Y.; Takasu, K. J. Org. Chem.
2008, 73, 7451.
3. (a) Hadden, M.; Nieuwenhuyzen, M.; Osborne, D.; Stevenson, P. J.; Thompson,
N.; Walker, A. D. Tetrahedron 2006, 62, 3977; (b) Powell, D. A.; Batey, R. A. Org.
Lett. 2002, 4, 2913; (c) Yadav, J. S.; Subba Reddy, B. V.; Sunitha, V.; Srinivasa
Reddy, K.; Ramakrishna, K. V. S. Tetrahedron Lett. 2004, 45, 7947.
4. Witherup, K. M.; Ransom, R. W.; Graham, A. C.; Bernard, A. M.; Salvatore, M. J.;
Lumma, W. C.; Anderson, P. S.; Pitzenberger, S. M.; Varga, S. L. J. Am. Chem. Soc.
1995, 117, 6682.
5. (a) Hadden, M.; Stevenson, P. J. Tetrahedron 2001, 57, 5615; (b) Vicente-Garcıá,
E.; Catti, F.; Ramon, R.; Lavilla, R. Org. Lett. 2010, 12, 860.
6. (a) Zhang, W.; Zheng, A.; Liu, Z.; Yang, L.; Li, Z. L. Tetrahedron Lett. 2005, 46, 5691;
(b) Zhang, W.; Huang, L.; Wang, J. Synthesis 2006, 2053.
ions with anilines produced by the hydrolysis of unstable N-
arylimine.
In order to confirm the formation of cyclic enamides, the dehy-
dration reactions of 3b and 4a promoted by BF3ÁOEt2 were per-
formed in anhydrous DCM at room temperature. It was found
that the cyclic enamides could be produced slowly under these
conditions. Differently, the cyclic enamide separated from the reac-
tion of 3b was 2,5-dihydropyrrol-2-one 10, but the cyclic enamide
separated from the reaction of 4a was 1,2,3,4-tetrahydropyridin-2-
one 9. (Scheme 3).
Next, the reactions of the separated 9 or 10 with in situ gener-
ated arylimine from 1a and 2a were examined in DCM at room
temperature in the presence of BF3ÁOEt2 (Scheme 4). It was found
that both exo-5h or endo- and exo-6a could be produced, but the
reaction of 10 was much slower (12 h) than the reaction of 9
(2 h). These results indicated that the isomerization of 10–8 was
reversible but difficult. Moreover, the one-pot reaction of 1a, 2a
with 10 was also much slower than the one-pot reaction of 1a,
2a with 3b (4 h) (Table 2).
According to these results, a plausible mechanism was proposed
for the formation of 5a by the one-pot reaction of aniline 1a and
benzaldehyde 2a with 3a (Scheme 5). Firstly, both N-arylimine
and cyclic enamide were produced in situ by molecular sieves-
promoted condensation of 1a and 2a, and by BF3ÁOEt2-promoted
dehydration; then the BF3ÁOEt2-catalyzed aza-Diels–Alder reaction
of the N-arylimine and cyclic enamide gave the product 5a.