10.1002/anie.201913656
Angewandte Chemie International Edition
RESEARCH ARTICLE
[3]
a) A. A. Danopoulos, J. R. Galsworthy, M. L. H. Green, L. H. Doerrer, S.
Cafferkey, M. B. Hursthouse, Chem. Commun. 1998, 2529-2560; b) C.
Bergquist, B. M. Bridgewater, C. J. Harlan, J. R. Norton, R. A. Friesner,
G. Parkin, J. Am. Chem. Soc. 2000, 122, 10581-10590; c) A. Di Saverio,
F. Focante, I. Camurati, L. Resconi, T. Beringhelli, G. D'Alfonso, D.
Donghi, D. Maggioni, P. Mercandelli, A. Sironi, Inorg. Chem. 2005, 44,
5030-5041; d) M. Dryzhakov, M. Hellal, E. Wolf, F. C. Falk, J. Moran, J.
Am. Chem. Soc. 2015, 137, 9555-9558; e) D. J. Scott, T. R. Simmons,
E. J. Lawrence, G. G. Wildgoose, M. J. Fuchter, A. E. Ashley, ACS
Catal. 2015, 5, 5540-5544; f) M. Dryzhakov, J. Moran, ACS Catal. 2016,
6, 3670-3673.
the unprecedented direct asymmetric reduction of C2-aryl
substituted N-protected indoles with high enantioselectivities and
broad functional group tolerance. The resulting chiral indoline
from gram scale reaction could be further converted into active
molecules and chiral ligand. The combination of DFT
calculations and mechanistic experiments suggested that the
chiral Brønsted acid could activate C2-arylindoles to form
iminium intermediates, which could be stereoselectively reduced
to form chiral indoline. Furthermore, the system could be
extended to the first asymmetric reduction of bulky C2-alkyl N-
protected indoles with moderate to excellent enantioselectivities.
[4]
a) Z. Shao, H. Zhang, Chem. Soc. Rev. 2009, 38, 2745-2755; b) C.
Zhong, X. Shi, Eur. J. Org. Chem. 2010, 2010, 2999-3025; c) Z. Zhang,
P. Jain, J. C. Antilla, Angew. Chem. Int. Ed. 2011, 50, 10961-10964;
Angew. Chem. 2011, 123, 11153-11156; d) R. J. Phipps, G. L.
Hamilton, F. D. Toste, Nat. Chem. 2012, 4, 603-614.
Experimental Section
[5]
[6]
Q. Zhou, W. Meng, J. Yang, H. Du, Angew. Chem. Int. Ed. 2018, 57,
12111-12115; Angew. Chem. 2018, 130, 12287–12291.
In argon, a 25 mL Schlenk tube was charged with toluene (4 mL), CP7
(0.01 mmol, 0.1 equiv) and catecholborane (0.03 mmol, 3 equiv). The
mixture was stirred at room temperature for 40 minutes, then moved the
tube to corresponding temperature (-50 oC to -20 oC) and stirred for 30
minutes. Indole (0.1 mmol, 1 equiv) and H2O (0.3 mmol, 3 equiv) were
added to the tube and continually stirred at corresponding temperature
for 24 hours. Upon completion of the reaction, H2O was added, aqueous
layers was extracted with ethyl acetate (10 mL) twice. The combined
organic layers were dried over anhydrous Na2SO4. After removal of the
solvent, the crude reaction mixture was purified on silica gel (petroleum
ether: ethyl acetate = 30:1-10:1) to afford the desired product.
a) D.-S. Wang, Q.-A. Chen, W. Li, C.-B. Yu, Y.-G. Zhou, X. Zhang, J.
Am. Chem. Soc. 2010, 132, 8909-8911; b) Y. Duan, L. Li, M.-W. Chen,
C.-B. Yu, H.-J. Fan, Y.-G. Zhou, J. Am. Chem. Soc. 2014, 136, 7688-
7700.
[7]
[8]
[9]
a) A. J. Kochanowska-Karamyan, M. T. Hamann, Chem. Rev. 2010, 110,
4489-4497; b) M. Ishikura, T. Abe, T. Choshi, S. Hibino, Nat. Pro. Rep.
2013, 30, 694-752; c) D. Zhang, H. Song, Y. Qin, Acc. Chem. Res.
2011, 44, 447-457; d) N. H. Greig, X.-F. Pei, T. T. Soncrant, D. K.
Ingram, A. Brossi, Med. Res. Rev. 1995, 15, 3-31; e) D. Crich, A.
Banerjee, Acc. Chem. Res. 2007, 40, 151-161.
a) Y.-G. Zhou, Acc. Chem. Res. 2007, 40, 1357-1366; bS. Anas, H. B.
Kagan, Tetrahedron Asymmetr. 2009, 20, 2193-2199; c) D. Liu, G.
Zhao, L. Xiang, Eur. J. Org. Chem. 2010, 2010, 3975-3984; d) D.-S.
Wang, Q.-A. Chen, S.-M. Lu, Y.-G. Zhou, Chem. Rev. 2012, 112, 2557-
2590; e) B. Balakrishna, J. L. Núñez-Rico, A. Vidal-Ferran, Eur. J. Org.
Chem. 2015, 2015, 5293-5303.
Acknowledgements
Financial support from the National Natural Science Foundation
of China (21772046, 21931013) is gratefully acknowledged.
Computational work was supported by Center for Computational
Science and Engineering at Southern University of Science and
Technology.
a) F. O. Arp, G. C. Fu, J. Am. Chem. Soc. 2006, 128, 14264-14265; b)
M. López-Iglesias, E. Busto, V. Gotor, V. Gotor-Fernández, J. Org.
Chem. 2012, 77, 8049-8055; c) K. Saito, Y. Shibata, M. Yamanaka, T.
Akiyama, J. Am. Chem. Soc. 2013, 135, 11740-11743; d) K. Saito, T.
Akiyama, Angew. Chem. Int. Ed. 2016, 55, 3148-3152; Angew. Chem.
2016, 128, 3200– 3204; e) X. L. Hou, B. H. Zheng, Org. Lett. 2009, 11,
1789-1791.
Keywords: Chiral Brønsted Acid • Boron • Water • Indole •
[10] a) J. L. García Ruano, A. Parra, V. Marcos, C. del Pozo, S. Catalán, S.
Monteagudo, S. Fustero, A. Poveda, J. Am. Chem. Soc. 2009, 131,
9432-9441; b) K. H. Kang, J. Do, Y. S. Park, J. Org. Chem. 2012, 77,
808-812; c) D. Katayev, M. Nakanishi, T. Bürgi, E. P. Kündig, Chem.
Sci. 2012, 3, 1422-1425; d) T. Saget, S. J. Lemouzy, N. Cramer,
Angew. Chem. Int. Ed. 2012, 51, 2238-2242; Angew. Chem. 2012, 124,
2281-2285; e) S. Panda, J. M. Ready, J. Am. Chem. Soc. 2018, 140,
13242-13252; f) G. Zhang, A. Cang, Y. Wang, Y. Li, G. Xu, Q. Zhang, T.
Xiong, Q. Zhang, Org. Lett. 2018, 20, 1798-1801; g) E. Ascic, S. L.
Buchwald, J. Am. Chem. Soc. 2015, 137, 4666-4669.
Asymmetric reduction
[1]
a) D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114,
9047-9153; b) M. Rueping, B. J. Nachtsheim, W. Ieawsuwan, I.
Atodiresei, Angew. Chem. Int. Ed. 2011, 50, 6706-6720; Angew. Chem.
2011, 123, 6838-6853; c) T. Akiyama, K. Mori, Chem. Rev. 2015, 115,
9277-9306; d) T. James, M. van Gemmeren, B. List, Chem. Rev. 2015,
115, 9388-9409; e) R. Maji, S. C. Mallojjala, S. E. Wheeler, Chem. Soc.
Rev. 2018, 47, 1142-1158; f) M. Terada Synthesis 2010, 1929-1982; g)
T. Akiyama, J. Itoh, K. Fuchibe, Adv. Synth. Catal. 2006, 348, 999-
1010; h) M. Terada, Chem. Commun. 2008, 4097-4112; h) M. Rueping,
J. Dufour, F. R. Schoepke, Green Chem. 2011, 13, 1084-1105; i) J. Yu,
F. Shi, L.-Z. Gong, Acc. Chem. Res. 2011, 44, 1156-1171; j) C. Zheng,
S.-L. You, Chem. Soc. Rev. 2012, 41, 2498-2518; k) S. Y. Shim, D. H.
Ryu, Acc. Chem. Res. 2019, 52, 2349-2360; l) Y.-B. Wang, B. Tan, Acc.
Chem. Res. 2018, 51, 534-547.
[11] a) Y.-C. Xiao, C. Wang, Y. Yao, J. Sun, Y.-C. Chen, Angew. Chem. Int.
Ed. 2011, 50, 10661-10664; Angew. Chem. 2011, 123, 10849-10852;
b) C. Li, J. Chen, G. Fu, D. Liu, Y. Liu, W. Zhang, Tetrahedron 2013, 69,
6839-6844; c) T. Touge, T. Arai, J. Am. Chem. Soc. 2016, 138, 11299-
11305; d) J. Wen, X. Fan, R. Tan, H.-C. Chien, Q. Zhou, L. W. Chung,
X. Zhang, Org. Lett. 2018, 20, 2143-2147; e) J. L. Núñez-Rico, H.
Fernández-Pérez, A. Vidal-Ferran, Green Chem. 2014, 16, 1153-1157.
[12] J. Cai, A. Crespo, X. Du, B. G. Dubois, D. Guiadeen, S. Kothandaraman,
P. Liu, R. Liu, W. Quan, C. Sinz, L. Wang, 2016, WO 2016045127.
[13] M. Brollo, J. Carry, V. Certal, E. Didier, G. Doerflinger, Y. El Ahmad, B.
Filoche-Romme, F. Halley, K. A. Karlsson, L. Schio, F. Thompson,
2012, WO 2012089633.
[2]
H. Yamamoto, K. Futatsugi, Angew. Chem. Int. Ed. 2005, 44, 1924-
1942; Angew. Chem. 2005, 117, 1958-1977; l) E. J. Corey, Angew.
Chem. Int. Ed. 2009, 48, 2100-2117; Angew. Chem. 2009, 121, 2134-
2151; c) S. Y. Shim, D. H. Ryu, Acc. Chem. Res. 2019, 52, 2349-2360;
d) E. Dimitrijević, M. S. Taylor, ACS Catal. 2013, 3, 945-962.
[14] G. W. Han, C. H. Lee, H. J. Han, S. G. Kim, 2014, KR 2014006726.
This article is protected by copyright. All rights reserved.