10
Tetrahedron
ACCEPTED MANUSCRIPT
this solution, NBS (504 mg, 2.83 mmol) was slowly added
Hz, ArH), 7.31 (1H, td, J = 7.6, 1.3 Hz, ArH), 7.12 (1H, s, ArH),
under oxygen atmosphere and the reaction mixture was allowed
to stir under oxygen over 18 h at rt. On completion, the reaction
was quenched with saturated solution of aq. sodium sulfite (15
mL). The organic layer was collected and washed with water (30
mL) and brine (30 mL), dried over anhydrous MgSO4, filtered
and the organic solvent was removed under reduced pressure.
The crude product was purified by column chromatography (15%
7.08 (1H, s, CH(OH)), 7.01 (1H, td, J = 7.5, 7.5, 1.1 Hz, ArH),
6.70 (1H, d, J = 7.6 Hz, ArH), 4.04 (3H, s, OMe), 1.54 (1H, s,
CH(OH)); 13C NMR (126 MHz, CDCl3) δ 150.9, 139.5, 129.4,
129.3, 128.9, 127.5, 127.0, 126.8, 126.7, 126.5, 126.1, 122.3,
121.7, 121.5, 115.4, 98.3, 92.8, 55.8.
Acknowledgments
EtOAc/Hexane)
to
isolate
2-(3-bromo-1,4-
naphthoquinone)benzaldehyde 38 as a yellow solid (276 mg,
0.809 mmol, 57 %) and 2-(3-bromo-1,4-dimethoxynaphthalen-2-
yl)benzaldehyde 45 (137 mg, 0.369 mmol 26%). Naphthalene 45
Mp 89-91 °C CH2Cl2; FTIR (ν/cm-1) 3070, 2933, 2844, 2745,
This work was supported by SABINA (Southern African
Biochemistry and Informatics for Natural Products Network), the
SPARC Foundation, the National Research Foundation (NRF)
Pretoria, South Africa, and the University of the Witwatersrand
(Science Faculty Research Council). The University of
Stellenbosch is thanked for providing the HRMS spectroscopy
service.
1
1694, 1596, 1576, 1491, 1351, 1146, 1080, 1040; H NMR (500
MHz, CDCl3) δ 9.82 (1H, d, J = 0.6 Hz), 8.20-8.17 (1H, m, ArH),
8.13-8.11 (1H, m, ArH), 8.10 (1H, dd, J = 7.8, 1.4 Hz), 7.72 (1H,
td, J = 7.5, 1.4 Hz), 7.61 (3H, m, ArH), 7.42 (1H, dd, J = 7.7, 1.7
Hz), 4.03 (3H, s, OMe), 3.48 (3H, s, OMe).; 13C NMR (126
MHz, CDCl3) δ 191.6, 150.8, 150.4, 140.4, 134.1, 133.5, 132.0,
129.2, 128.7, 128.2, 128.0, 127.7, 127.6, 127.2, 123.1, 122.6,
114.7, 61.6, 61.5.; HRMS (ESI+): Found [M+H]+ 371.0267,
C19H16O3Br [M+H]+ requires 371.0283. Quinone 38 was identical
to that described above.
References and notes
1. (a) Nakano, H.; Matsuda, Y.; Ito, K.; Ohkubo, S.; Morimoto, M.;
Tomita, F. J. Antibiot. 1981, 34, 266–270; (b) Takahashi, K.;
Yoshida, M.; Tomita, F.; Shirahata, K. J. Antibiot. 1981, 34, 271–
275; (c) Hosoya, T.; Takashiro, E.; Matsumoto, T.; Suzuki, K. J.
Am. Chem. Soc. 1994, 116, 1004–1015.
2. (a) Futagami, S.; Ohashi, Y.; Imura, K.; Hosoya, T.; Ohmori, K.;
Matsumoto, T.; Suzuki, K. Tetrahedron Lett. 2000, 41, 1063–
1067; (b) Findlay, J. A.; Daljeet, A.; Murray, P. J.; Rej, R. N.;
Can. J. Chem. 1987, 65, 427–431.
3. (a) Ishii, H.; Ishikawa, T.; Haginiwa, J. Yakugaku Zasshi 1977, 97,
890–900; (b) Ishikawa, T.; Murota, M.; Watanabe, T.; Harayama,
T.; Ishii, H. Tetrahedron Lett. 1995, 36, 4269–4272.
4. Kharel, M. K.; Zhu, L.; Liu, T.; Rohr, J. J. Am. Chem. Soc. 2007,
129, 3780–3781.
5. Akagi, Y.; Yamada, S.-n; Etomi, N.; Kumamoto, T.; Nakanishi,
W. Ishikawa, T. Tetrahedron Lett. 2010, 51, 1338–1340.
6. Monro, S. M. A.; Cottreau, K. M.; Spencer, C.; Wentzell, J. R.;
Graham, C. L.; Borissow, C. N.; Jakeman, D. L.; McFarland, S.
A.; Bioorg. Med. Chem. 2011, 19, 3357–3360.
7. Jakeman, D. L.; Bandi, S.; Graham, C. L.; Reid, T. R.; Wentzell,
J. R.; Douglas, S. E.; Antimicrob. Agents Chemother. 2009, 53,
1245–1247.
8. Yang, X.; Yu, B. Chem. Eur. J. 2013, 19, 8431–8434.
9. Martinez-Farina, C. F.; McCormick, N.; Robertson, A. W.;
Clement, H.; Jee, A.; Ampaw, A.; Chan, N.-L.; Syvitski, R. T.;
Jakeman, D. L. Org. Biomol. Chem., 2015, 13, 10324–10327.
10. (a) de Frutos, Ó.; Atienza, C.; Echavarren, A. M. Eur. J. Org.
Chem. 2001, 163–171; (b) Shan, M.; Sharif, E. U.; O'Doherty, G.
A. Angew. Chem. Int. Ed. 2010, 49, 9492–9495.
2-[2-(Bromomethyl)phenyl]-1,4-dimethoxynaphthalene 46
[2-(1,4-Dimethoxynaphthalen-2-yl]phenyl)methanol 36 (100 mg,
0.340 mmol) was dissolved in dry CH2Cl2 (10 mL). PPh3 (446
mg, 1.70 mmol) and CBr4 (563 mg, 1.70 mmol) were added to it
and the reaction was allowed to stir at rt under an Ar atmosphere
for 3 h after which time the reaction mixture goes from clear to
bright orange in color. On completion of the reaction the CH2Cl2
was removed under vacuum and the resulting orange residue was
subjected to column chromatography (10% EtOAc/Hexane) to
obtain product 46 as a yellow oil (85.0 mg, 0.237 mmol, 67%).
1
FTIR (ν/cm-1) 3056, 1591, 1365, 690; H NMR (300 MHz,
CDCl3) δ 8.29 (1H, d, J = 7.7 Hz, ArH), 8.13 (1H, d, J = 8.3 Hz,
ArH), 7.62-7.50 (3H, m, ArH), 7.39 (3H, s, ArH), 6.76 (1H, s,
ArH-3), 4.55 (1H, d, J = 10.2 Hz, one of CH2Br), 4.47 (1H, d, J =
10.2 Hz, one of CH2Br), 3.99 (3H, s, OMe), 3.49 (3H, s, OMe);
13C NMR (75 MHz, CDCl3) δ 151.5, 146.5, 138.6, 136.2, 130.9,
130.7, 128.7, 128.3, 128.2, 127.9, 126.9, 126.3, 125.8, 122.3,
122.2, 106.3, 61.5, 55.8, 32.5; HRMS (ESI+): Found M+ for
C19H17O279Br: 356.03912 and C19H17O281Br: 358.03737;
C19H17O2Br M+ requires 357.24108.
11. (a) For synthesis of 6H-dibenzo[c,h]chromen-6-one skeleton and
arnottin see (a) (i) Jung, M. E.; Jung, Y. H. Tetrahedron Lett.
1988, 29, 2517–2520; (ii) Hart, D. J.; Merriman, Tetrahedron Lett.
G. H. 1989, 30, 5093–5096; (iii) Deshpande, P. P.; Martin, O. R.
Tetrahedron Lett. 1990, 31, 6313–6316; (iv) James, C. A.;
Snieckus, V. J. Org. Chem. 2009, 74, 4080–4093; (v) Patra, A.;
Pahari, P.; Ray, S.; Mal, D. J. Org. Chem. 2005, 70, 9017–9020;
(vi) Cortezano-Arellano, O.; Cordero-Vargas, Tetrahedron Lett.
A. 2010, 51, 602–604; (vii) Konno, F.; Ishikawa, T.; Kawahata,
M.; Yamaguchi, K. J. Org. Chem. 2006, 71, 9818–9823; (viii)
Moschitto, M. J.; Anthony, D. R.; Lewis, C. A. J. Org. Chem.
2015, 80, 3339–3342; (ix) Jangir, R. Argade, N. P. RSC Adv.
2014, 4, 5531–5535. (b) For synthesis of phenanthrovirdin
aglycon see (i) Gore, M. P.; Gould, S. J.; Weller, D. D. J. Org.
Chem. 1991, 56, 2289–2291; (ii) Valderrama, J. A.; Spate, A.;
González, M. F. Heterocycl. Commun. 1997, 3, 23–28; (iii)
Valderrama, J. A.; González, M. F.; Valderrama, C. Tetrahedron
1999, 55, 6039–6050; (iv) Mohri, S.-i; Stefinovic, M.; Snieckus,
V. J. Org. Chem. 1997, 62, 7072–7073. (c) For synthesis of
jadomycins see (i) Akagi, Y.; Yamada, S.-i; Etomi, N.:
Kumamoto, T.; Nakanishi, W.; Ishikawa, T. Tetrahedron Lett.
2010, 51, 1338–1340.
12-Methoxy-6H-dibenzo[c,h]chromen-6-one 37 and 12-
Methoxy-6H-dibenzo[c,h]chromen-6-ol 48
In one experiment that was not readily reproducible [2-(1,4-
dimethoxynaphthalen-2-yl)phenyl]methanol 31 (720 mg, 2.45
mmol) was dissolved in CH2Cl2 (25 mL) and to this stirring
solution, NBS (850 mg, 4.78 mmol) was slowly added and the
reaction mixture was allowed to stir at rt and under atmospheric
conditions for 8 h. On completion, the reaction was quenched
with saturated solution of aq. sodium sulfite (30 mL). The
organic layer was collected and washed with water (30 mL) and
brine (30 mL), dried over anhydrous MgSO4, filtered and the
organic solvent was removed under reduced pressure. The crude
product was purified by column chromatography (10%
EtOAc/Hexane) to isolate 12-methoxy-6H-dibenzo[c,h]chromen-
6-one 37 as light tan solid (290 mg, 1.05 mmoles, 43%) and 12-
methoxy-6H-dibenzo[c,h]chromen-6-ol 48 (245 mg, 0.882
mmoles 36%). The spectroscopic data for 37 was found to be in
agreement with that of Jones and Qabaja.23 and that described
above. Compound 48 was partially characterized. 1H NMR (500
MHz, CDCl3) δ 8.59 (1H, d, J = 8.3 Hz, ArH), 8.30 (1H, d, J =
8.4 Hz, ArH), 7.72-7.68 (2H, m, ArH), 7.60 (1H, d, J = 6.9, 7.0
12. (a) Pathak, R.; Vandayar, K.; van Otterlo, W. A. L.; Michael, J. P.;
Fernandes, M. A.; de Koning, C. B. Org. Biomol. Chem. 2004, 2,
3504–3509; (b) de Koning, C. B.; Michael, J. P.; Pathak, R.; van
Otterlo, W. A. L. Tetrahedron Lett. 2004, 45, 1117–1119; (c)
Pathak, R.; Nhlapo, J. M.; Govender, S.; Michael, J. P.; van