ORGANIC
LETTERS
2001
Vol. 3, No. 1
13-15
Mesityllithium as a Reagent for
Chemoselective Halogen−Lithium
Exchange Reaction
Yoshinori Kondo,* Miho Asai, Tohru Miura, Masanobu Uchiyama, and
Takao Sakamoto
Graduate School of Pharmaceutical Sciences, Tohoku UniVersity,
Aobayama, Aoba-ku, Sendai 980-8578, Japan
Received August 31, 2000
ABSTRACT
Mesityllithium was found to be an excellent selective lithiating agent to prepare aryllithium compounds having alkoxycarbonyl groups. To
extend our studies on chemoselective lithiation, an important precursor for the synthesis of camptothecin was prepared using a halogen−
lithium exchange reaction followed by an intramolecular 1,2-addition.
Halogen-metal exchange reaction is one of the most
powerful methods for preparing various organometallic
compounds among which the preparation of organolithium
compounds has been most extensively studied.1 Organo-
lithium compounds display a strong anionic character that
allows reactions with various electrophiles to take place.
However, compatibility with electrophilic substituents such
as ester groups is limited. To overcome this restriction,2,3
we employed the combination of a sterically hindered
aromatic lithiating agent, such as mesityllithium,4 and bulky
ester groups. An aryllithium with a tert-butoxycarbonyl
group, which was prepared using mesityllithium as the
lithiating agent, was stable enough to react with various
electrophiles at -78 °C, without any self condensation. To
extend the use of mesityllithium for chemoselective lithiation,
an important precursor for the synthesis of camptothecin5a,b
was prepared by a halogen-lithium exchange reaction prior
to a cyclization by an intramolecular 1,2-addition.
First, halogen-lithium exchange reactions involving iodo-
benzoates were investigated using mesityllithium. Ethyl
2-iodobenzoate was treated with mesityllithium in THF at
(1) (a) Gilman, H.; Jacoby, A. L. J. Org. Chem. 1938, 3, 108. (b) Gilman,
H.; Langham, W.; Jacoby, A. L. J. Am. Chem. Soc. 1939, 61, 106. (c)
Wakefield, B. J. The Chemistry of Organolithium Compounds; Pergamon:
Oxford, 1974. (d) Wakefield, B. J. Organolithium Method; Academic
Press: London, 1988. (e) Snieckus, V.; Gray, M.; Tinkl, M. In Compre-
hensiVe Organometallic Chemistry II; Abel, F. G., Stone, F. G. A.,
Wilkinson, G., McKillop, A., Eds.; Pergamon Press: Oxford, 1995; Vol.
1, p 1.
(2) For examples of previous approaches in chemoselective lithiation,
see: (a) Parham, W. E.; Jones, L. D. J. Org. Chem. 1976, 41, 2704. (b)
Parham, W. E.; Jones, L. D.; Sayed, Y. A. J. Org. Chem. 1975, 40, 2394.
(c) Parham, W. E.; Bradsher, C. K. Acc. Chem. Res. 1982, 15, 300. (d)
Beak, P.; Musick, T. J.; Liu, C.; Cooper, T.; Gallagher, D. J. J. Org. Chem.
1993, 58, 7330. (e) Gray, M.; Tinkl, M.; Snieckus, V. In ComprehensiVe
Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G.,
Eds.; Elsevier Science Ltd.: Oxford 1995; Vol. 11, pp 1-92 and references
therein.
(3) For recent examples of chemoselective aromatic metalation, see: (a)
Zhu, R.; Wehmeyer, R. M.; Rieke, R. D. J. Org. Chem. 1991, 56, 1445.
(b) Kondo, Y.; Matsudaira, T.; Sato, J.; Murata, N.; Sakamoto, T. Angew.
Chem., Int. Ed. Engl. 1996, 35, 736. (c) Kondo, Y.; Fujinami, M.; Uchiyama,
M.; Sakamoto, T. J. Chem. Soc., Perkin Trans. 1 1997, 799. (d) Kondo,
Y.; Komine, T.; Fujinami, M.; Uchiyama, M.; Sakamoto, T. J. Comb. Chem.
1999, 1, 123. (e) Kondo, Y.; Shilai, M.; Uchiyama, M.; Sakamoto, T. J.
Am. Chem. Soc. 1999, 121, 3539. (f) Boymond, L.; Rottlaender, M.; Cahiez,
G.; Knochel, P. Angew. Chem., Int. Ed. 1998, 37, 1701.
(4) For an example of hydrogen-lithium exchange reaction using
mesityllithium, see: Comins, D. L.; LaMunyon, D. H. Tetrahedron Lett.
1988, 29, 773.
(5) (a) Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail.
A. T.; Sim, G. A. J. Am. Chem. Soc. 1966, 88, 3888. (b) Comins, D. L.;
Hong, H.; Saha, J. K.; Jianhua, G. J. Org. Chem. 1994, 59, 5120.
10.1021/ol000253x CCC: $20.00 © 2001 American Chemical Society
Published on Web 12/15/2000