10.1002/anie.201814373
Angewandte Chemie International Edition
COMMUNICATION
in Organic Synthesis−From Fundamentals to Applications (Eds.: R. Luisi,
V. Capriati), Wiley-VCH, Weinheim, 2014.
[4]
[5]
Flow conditions allow to improve this functional group tolerance, for more
details, see: a) A. Nagaki, H. Kim, H. Usutani, C. Matsuo, J.-I. Yoshida,
Org. Biomol. Chem. 2010, 8, 1212; b) H. Kim, A. Nagaki, J.-I. Yoshida,
Nat. Commun. 2011, 2, 264; c) A. Nagaki, K. Imai, S. Ishiuchi, J.-I.
Yoshida, Angew. Chem. Int. Ed. 2015, 54, 1914; d) H. Kim, H.-J. Lee, D.-
P. Kim, Angew. Chem. Int. Ed. 2015, 54, 1877; e) M. Ketels, M. A. Ganiek,
N. Weidmann, P. Knochel, Angew. Chem. Int. Ed. 2017, 56, 12770.
a) M. Abarbri, J. Thibonnet, L. Bérillon, F. Dehmel, M. Rottländer, P.
Knochel, J. Org. Chem. 2000, 65, 4618; b) K. Kitagawa, A. Inoue, H.
Shinokubo, K. Oshima, Angew. Chem. Int. Ed. 2000, 39, 2481; c) A.
Inoue, K. Kitagawa, H. Shinokubo, K. Oshima, J. Org. Chem. 2001, 66,
4333; d) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp,
T. Korn, I. Sapountzis, V. A. Vu, Angew. Chem. Int. Ed. 2003, 42, 4302;
e) A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 3333; f)
H. Ren, A. Krasovskiy, P. Knochel, Org. Lett. 2004, 6, 4215; g) H. Ren,
A. Krasovskiy, P. Knochel, Chem. Commun. 2005, 543; h) X.-J. Wang,
L. Zhang, X. Sun, Y. Xu, D. Krishnamurthy, C. H. Senanayake, Org. Lett.
2005, 7, 5593; i) X.-J. Wang, X. Sun, L. Zhang, Y. Xu, D. Krishnamurthy,
C. H. Senanayake, Org. Lett. 2006, 8, 305; j) X.-J. Wang, Y. Xu, L. Zhang,
D. Krishnamurthy, C. H. Senanayake, Org. Lett. 2006, 8, 3141; k) A.
Krasovskiy, B. F. Straub, P. Knochel, Angew. Chem. Int. Ed. 2006, 45,
159; l) D. S. Ziegler, K. Karaghiosoff, P. Knochel, Angew. Chem. Int. Ed.
2018, 57, 6701.
Scheme 7. Comparison of the kinetics of Br/Sm and Br/Mg exchange reactions
in THF at 0 °C for 1 M solutions of reagents.
Quantitative comparison with the second-order rate constant of
Br/Mg exchange with the turbo-Grignard reagent iPrMgCl·LiCl
with 16 (Scheme 7) revealed that the Br/Sm exchange proceeds
8.5 × 105 faster.19 The Br/La exchange kinetics on 16 with the
reagent nBu2LaMe·5LiCl could not previously be measured even
in highly diluted solutions at -50°C because the exchange reaction
proceeded in only a few seconds. The t1/2 for Br/Sm-exchange on
16 is equal to 3 min under the same experimental conditions
(Figure S1 in SI), which led us to the conclusion that the Br/La
proceeds much faster (factor 10 or greater) than the Br/Sm
exchange for which only the lower limit is known.
[6]
[7]
[8]
a) L. Shi, Y. Chu, P. Knochel, H. Mayr, Angew. Chem. Int. Ed. 2008, 47,
202; b) L. Shi, Y. Chu, P. Knochel, H. Mayr, J. Org. Chem. 2009, 74,
2760; c) L. Shi, Y. Chu, P. Knochel, H. Mayr, Org. Lett. 2009, 11, 3502.
a) F. F. Kneisel, M. Dochnahl, P. Knochel, Angew. Chem. Int. Ed. 2004,
43, 1017; b) F. F. Kneisel, H. Leuser, P. Knochel, Synthesis 2005, 2625;
c) L.-Z. Gong, P. Knochel, Synlett 2005, 267.
In summary, we have reported a new I/Sm- and Br/Sm-exchange
reaction on various aryl and heteroaryl iodides and bromides. The
resulting organosamarium reagents proved to be very useful
organometallic intermediates adding efficiently to aldehydes and
ketones and undergoing acylations with N,N-dimethylamides.
Compared to the corresponding aryllanthanum reagents prepared
by a related exchange reaction,11a-b a better functional group
tolerance was observed, an ester or an pyridyl ring being tolerated.
Furthermore, a kinetic study allowed us to determine the rate of
the Br/Sm-exchange, confirming that it is considerably faster than
the Br/Mg-exchange (8.5 × 105 faster) but somewhat slower than
the Br/La-exchange. This clearly supports that the metal
electronegativity is an important factor for predicting the rate of a
halogen/metal exchange.
a) M. Hojo, H. Harada, H. Ito, A. Hosomi, Chem. Commun. 1997, 21,
2077; b) M. Hojo, H. Harada, H. Ito, A. Hosomi, J. Am. Chem. Soc. 1997,
119, 5459; c) M. Hojo, R. Sakuragi, Y. Murakami, Y. Baba, A. Hosomi,
Organometallics 2000, 19, 4941; d) J. Nakao, R. Inoue, H. Shinokubo, K.
Oshima, J. Org. Chem. 1997, 62, 1910.
[9]
a) X. Yang, T. Rotter, C. Piazza, P. Knochel, Org. Lett. 2003, 5, 1229; b)
M. I. Calaza, X. Yang, D. Soorukram, P. Knochel, Org. Lett. 2004, 6, 529;
c) X. Yang, P. Knochel, Synlett 2004, 2303; d) X. Yang, P. Knochel, Org.
Lett. 2006, 8, 1941.
[10] B. M. Trost, Science 1991, 254, 1471.
[11] a) A. D. Benischke, L. Anthore-Dalion, G. Berionni, P. Knochel, Angew.
Chem. Int. Ed. 2017, 56, 16390; b) A. D. Benischke, L. Anthore-Dalion,
F. Kohl, P. Knochel, Chem. Eur. J. 2018, 24, 11103; c) A. Music, C.
Hoarau, N. Hilgert, F. Zischka, D. Didier, Angew. Chem. Int. Ed. 2018,
57, DOI: 10.1002/anie.201810327.
[12] L. Pauling, J. Am. Chem. Soc. 1932, 54, 3570.
Acknowledgements
[13] a) P. Girard, J.-L. Namy, H. B. Kagan, J. Am. Chem. Soc. 1980, 102,
2693; b) J.-L. Namy, J. Collin, C. Bied, H. B. Kagan, Synlett 1992, 733;
c) C. Bied, J. Collin, H. B. Kagan, Tetrahedron 1992, 48, 3877; d) J.-L.
Namy, M. Colomb, H. B. Kagan, Tetrahedron Lett. 1994, 35, 1723; e) B.
Hamann, J.-L. Namy, H. B. Kagan, Tetrahedron 1996, 52, 14225; f) B.
Hamann-Gaudinet, J.-L. Namy, H. B. Kagan, Tetrahedron Lett. 1997, 38,
6585; g) B. Hamann-Gaudinet, J.-L. Namy, H. B. Kagan, J. Organo-
metallic Chem. 1998, 567, 39; h) A. Krief, A.-M. Laval, Chem Rev. 1999,
99, 745.
We thank the LMU Munich for financial support and the Humboldt
foundation for fellowship to L. A.-D. We also thank Albemarle
(Frankfurt) and BASF (Ludwigshafen) for the generous gift of
chemicals.
Keywords: halogen-samarium exchange • samarium • kinetics •
functionalized organometallics • lanthanides
[14] A. Krasovskiy, F. Kopp, P. Knochel, Angew. Chem. Int. Ed. 2006, 45,
497.
[15] The rate of the I/Sm-exchange is much faster than the rate of the Br/Sm-
exchange, therefore the optimum reagents for both exchanges are
different. A summary of all samarium reagents prepared and tested are
included as Table S1 in the SI.
[1]
[2]
Handbook of Functionalized Organometallics: Applications in Synthesis
(Ed.: P. Knochel), Wiley-VCH, Weinheim, 2008.
a) E. Frankland, Liebig Ann. Chem. 1849, 71, 171; b) E. Frankland, J.
Chem. Soc. 1849, 2, 263; c) V. Grignard, Comp. Rend. Acad. Sci. 1900,
130, 1322; d) V. Grignard, Ann. Chim. 1901, 24, 433; e) K. Ziegler, H.
Colonius, Liebigs Ann. Chem. 1930, 479, 135.
[16] For a comparison with arylcerium reagent, see Table S2 in the SI.
[17] a) S. Collins, Y. Hong, Tetrahedron Lett. 1987, 28, 4391-4394; b) S.
Collins, Y. Hong, G. J. Hoover, J. R. Veit, J. Org. Chem. 1990, 55, 3565-
3568.
[3]
a) Organolithiums: selectivity for synthesis, Vol. 23., (Ed.: J. Clayden)
Elsevier, Oxford, 2002; b) F. Leroux, M. Schlosser, E. Zohar, I. Marek in
The Chemistry of Organolithium Compounds (Eds.: Z. Rappoport, I.
Marek) John Wiley & Sons, Ltd, Chichester, 2004; c) Lithium Compounds
[18] Organometallics in Organic Synthesis (Ed.: E.-ichi Negishi), Wiley, New
York, 1980
[19] a) L. Shi, Y. Chu, P. Knochel, H. Mayr, Angew.Chem. Int. Ed. 2008, 47,
This article is protected by copyright. All rights reserved.