5232
A. Tatami et al. / Tetrahedron Letters 44 (2003) 5229–5233
the a-face of the molecule. In this way, the JK-ring was
assembled from the fragments (8, 9) through only seven
synthetic operations.
5. For attempts toward the preparation of anti-CTX antibod-
ies, see: (a) Oguri, H.; Tanaka, S.-I.; Hishiyama, S.; Oishi,
T.; Hirama, M.; Tsumuraya, T.; Tomioka, Y.; Mizugaki,
M. Synthesis 1999, 1431–1436; (b) Nagumo, Y.; Oguri, H.;
Shindo, Y.; Sasaki, S.-y.; Oishi, T.; Hirama, M.; Tomioka,
Y.; Mizugaki, M.; Tsumuraya, T. Bioorg. Med. Chem.
Lett. 2001, 11, 2037–2040; (c) Hokama, Y.; Takenaka, W.
E.; Nishimura, K. L.; Ebesu, J. S. M.; Bourke, R.; Sullivan,
P. K. J. AOAC Int. 1998, 81, 727–735; (d) Pauillac, S.;
Sasaki, M.; Inoue, M.; Naar, J.; Branaa, P.; Chinain, M.;
Tachibana, K.; Legrand, A.-M. Toxicon 2000, 38, 669–
685.
To complete the synthesis of the right wing of CTX, the
carbon chain corresponding to the G-ring was intro-
duced (Scheme 4). HF·pyridine effected the selective
removal of TBPS to afford 35 in 76% yield. The alcohol
of 35 was in turn oxidized with SO3·pyridine to aldehyde
36, which was subjected to MgBr2-promoted allylation
using allyltributylstannane to generate alcohol 37 (62%)
and the C29-epimer (21%). Finally, NAP protection of
37 gave rise to the targeted right wing 10 in 91% yield,
which can be readily coupled with the left wing after
modification of the terminal olefin.6,9,22
6. (a) Hirama, M.; Oishi, T.; Uehara, H.; Inoue, M.;
Maruyama, M.; Oguri, H.; Satake, M. Science 2001, 294,
1904–1907; (b) Inoue, M.; Uehara, H.; Maruyama, M.;
Hirama, M. Org. Lett. 2002, 4, 4551–4554.
In conclusion, the right half of CTX and 51-hydroxy-
CTX3C was synthesized by a highly convergent strategy
using a significantly improved protocol. The present
synthesis of 10 only requires 23 steps from I-ring 5,
whereas the previous procedure for 11 involved 35
steps.11 Of note in the present synthesis is the successful
application of the oxiranyl anion strategy for the H-ring
and the intramolecular carbonylation protocol for the
J-ring, both of which substantially contributed to the
conciseness of the synthesis. The total syntheses of
ciguatoxin and 51-hydroxyCTX3C have become our
next focus, and will be reported in due course.
7. For recent synthetic studies of ciguatoxins from other
groups, see: (a) Takakura, H.; Noguchi, K.; Sasaki, M.;
Tachibana, K. Angew. Chem., Int. Ed. 2001, 40, 1090–
1093; (b) Sasaki, M.; Ishikawa, M.; Fuwa, H.; Tachibana,
K. Tetrahedron 2002, 58, 1889–1911; (c) Takakura, H.;
Sasaki, M.; Honda, S.; Tachibana, K. Org. Lett. 2002, 4,
2771–2774; (d) Sasaki, M.; Noguchi, T.; Tachibana, K. J.
Org. Chem. 2002, 67, 3301–3310; (e) Fujiwara, K.;
Takaoka, D.; Kusumi, K.; Kawai, K.; Murai, A. Synlett
2001, 691–693; (f) Fujiwara, K.; Koyama, Y.; Doi, E.;
Shimawaki, K.; Ohtaniuchi, Y.; Takemura, A.; Souma,
S.-i. Murai, A. Synlett 2002, 1496–1499; (g) Fujiwara, K.;
Koyama, Y.; Kawai, K.; Tanaka, H.; Murai, A. Synlett
2002, 1835–1838; (h) Tanaka, H.; Kawai, K.; Fujiwara, K.;
Murai, A. Tetrahedron 2002, 58, 10017–10031; (i) Kira, K.;
Isobe, M. Tetrahedron Lett. 2001, 42, 2821–2824; (j) Kira,
K.; Hamajima, A.; Isobe, M. Tetrahedron 2002, 58, 1875–
1888; (k) Baba, T.; Isobe, M. Synlett 2003, 547–551; (l)
Takai, S.; Sawada, N.; Isobe, M. J. Org. Chem. 2003, 68,
3225–3231; (m) Eriksson, L.; Guy, S.; Perlmutter, P.;
Lewis, R. J. Org. Chem. 1999, 64, 8396–8398; (n) Bond,
S.; Perlmutter, P. Tetrahedron 2002, 58, 1779–1787; (o)
Leeuwenburgh, M. A.; Kulker, C.; Overkleeft, H. S.; van
der Marel, G. A.; van Boom, J. H. Synlett 1999, 1945–
1947; (p) Clark, J. S.; Hamelin, O. Angew. Chem., Int. Ed.
2000, 39, 372–374 and references cited therein.
8. Oguri, H.; Hirama, M.; Tsumuraya, T.; Fujii, I.;
Maruyama, M.; Uehara, H.; Nagumo, Y. J. Am. Chem.
Soc., in press.
9. (a) Imai, H.; Uehara, H.; Inoue, M.; Oguri, H.; Oishi, T.;
Hirama, M. Tetrahedron Lett. 2001, 42, 6219–6222; (b)
Inoue, M.; Wang, G. X.; Wang, J.; Hirama, M. Org. Lett.
2002, 4, 3439–3442.
10. Application of NAP (2-naphthylmethyl) group was
demonstrated in the practical total synthesis of CTX3C
(Ref. 6b). For NAP ether references, see: (a) Gaunt, M. J.;
Yu, J.; Spencer, J. B. J. Org. Chem. 1998, 63, 4172–4173;
(b) Wright, J. A.; Yu, J.; Spencer, J. B. Tetrahedron Lett.
2001, 42, 4033–4036; (c) Xia, J.; Abbas, S. A.; Locke, R.
D.; Piskorz, C. F.; Alderfer, J. L.; Matta, K. L. Tetra-
hedron Lett. 2000, 41, 169–173.
Acknowledgements
This work was supported in part by a grant from the
Takeda Science Foundation (M.I.).
References
1. For recent reviews, see: (a) Scheuer, P. J. Tetrahedron 1994,
50, 3–18; (b) Lewis, R. J. Toxicon 2001, 39, 97–106; (c)
Yasumoto, T.; Murata, M. Chem. Rev. 1993, 93, 1897–
1909; (d) Yasumoto, T. Chem. Rec. 2001, 1, 228–242.
2. (a) Murata, M.; Legrand, A. M.; Ishibashi, Y.; Yasumoto,
T. J. Am. Chem. Soc. 1989, 111, 8929–8931; (b) Murata,
M.; Legrand, A.-M.; Ishibashi, Y.; Fukui, M.; Yasumoto,
T. J. Am. Chem. Soc. 1990, 112, 4380–4386; (c) Satake, M.;
Morohashi, A.; Oguri, H.; Oishi, T.; Hirama, M.; Harada,
N.; Yasumoto, T. J. Am. Chem. Soc. 1997, 119, 11325–
11326; (d) Satake, M.; Murata, M.; Yasumoto, T. Tetra-
hedron Lett. 1993, 34, 1975–1978; (e) Satake, M.; Fukui,
M.; Legrand, A.-M.; Cruchet, P.; Yasumoto, T. Tetra-
hedron Lett. 1998, 39, 1197–1198; (f) Lewis, R. J.; Vernoux,
J.-P.; Brereton, I. M. J. Am. Chem. Soc. 1998, 120,
5914–5920; (g) Yasumoto, T.; Igarashi, T.; Legrand, A.-
M.; Cruchet, P.; Chinain, M.; Fujita, T.; Naoki, H. J. Am.
Chem. Soc. 2000, 122, 4988–4989.
11. (a) Oishi, T.; Uehara, H.; Nagumo, Y.; Shoji, M.; Le
Brazidec, J.-Y.; Kosaka, M.; Hirama, M. Chem. Commun.
2001, 381–382; (b) Uehara, H.; Oishi, T.; Inoue, M.; Shoji,
M.; Nagumo, Y.; Kosaka, M.; Le Brazidec, J.-Y.; Hirama,
M. Tetrahedron 2002, 58, 6493–6512.
3. Bagnis, R.; Chanteau, S.; Chungue, E.; Hurtel, J. M.;
Yasumoto, T.; Inoue, A. Toxicon 1980, 18, 199–208.
4. (a) Lombet, A.; Bidard, J.-N.; Lazdunski, M. FEBS Lett.
1987, 219, 355–359; (b) Dechraoui, M.-Y.; Naar, J.;
Pauillac, S.; Legrand, A.-M. Toxicon 1999, 37, 125–143.