hindered Si-face of the aldehyde in an endo mode to avoid
intrusion into the rhodium framework leads to the observed
cycloadduct. The substantial difference in reaction times between
catalyses with Rh2(S-BPTPI)4 (1a) and Rh2(S-PTPI)4 (1b)
suggests that catalyst turnover, rather than cycloaddition, is
the rate-determining step in this reaction; the sterically more
demanding benzene-fused phthalimido group in 1a would facilitate
decomplexation of the cycloadduct and catalyst turnover.
7 Very recently, Doyle and co-workers reported the effective use of
chiral cationic dirhodium(II,III) carboxamidate complexes in
enantioselective 1,3-dipolar cycloaddition reactions between
nitrones and a,b-unsaturated aldehydes, see: Y. Wang, J. Wolf,
P. Zavalij and M. P. Doyle, Angew. Chem., Int. Ed., 2008, 47, 1439.
8 (a) M. Anada, T. Washio, N. Shimada, S. Kitagaki, M. Nakajima,
M. Shiro and S. Hashimoto, Angew. Chem., Int. Ed., 2004, 43,
2665; see also: (b) A. Boyer, G. E. Veitch, E. Beckmann and
S. V. Ley, Angew. Chem., Int. Ed., 2009, 48, 1317.
9 (a) T. Washio, R. Yamaguchi, T. Abe, H. Nambu, M. Anada and
S. Hashimoto, Tetrahedron, 2007, 63, 12037; (b) T. Washio,
H. Nambu, M. Anada and S. Hashimoto, Tetrahedron: Asymmetry,
2007, 18, 2606.
10 (a) S. A. Kozmin and V. H. Rawal, J. Org. Chem., 1997, 62, 5252;
(b) S. A. Kozmin, J. M. Janey and V. H. Rawal, J. Org. Chem.,
1999, 64, 3039; (c) S. A. Kozmin, M. T. Green and V. H. Rawal,
J. Org. Chem., 1999, 64, 8045.
11 (a) Y. Huang, A. K. Unni, A. N. Thadani and V. H. Rawal,
Nature, 2003, 424, 146; (b) A. N. Thadani, A. R. Stankovic and
V. H. Rawal, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5846.
12 For reviews, see: (a) P. M. Pihko, Angew. Chem., Int. Ed., 2004, 43,
2062; (b) H. Yamamoto and K. Futatsugi, Angew. Chem., Int. Ed.,
2005, 44, 1924; (c) M. S. Taylor and E. N. Jacobsen, Angew.
Chem., Int. Ed., 2006, 45, 1520.
13 (a) A. K. Unni, N. Takenaka, H. Yamamoto and V. H. Rawal,
J. Am. Chem. Soc., 2005, 127, 1336; (b) S. Rajaram and
M. S. Sigman, Org. Lett., 2005, 7, 5473; (c) A. Friberg,
C. Olsson, F. Ek, U. Berg and T. Frejd, Tetrahedron: Asymmetry,
2007, 18, 885; (d) K. H. Jensen and M. S. Sigman, Angew. Chem.,
Int. Ed., 2007, 46, 4748.
14 For theoretical studies on the 1-naphthyl-TADDOL-catalyzed
enantioselective HDA reaction between Rawal’s diene and
aldehydes, see: (a) D. J. Harriman and G. Deslongchamps,
J. Mol. Model., 2006, 12, 793; (b) R. Gordillo, T. Dudding,
C. D. Anderson and K. N. Houk, Org. Lett., 2007, 9, 501;
(c) C. D. Anderson, T. Dudding, R. Gordillo and K. N. Houk,
Org. Lett., 2008, 10, 2749.
In summary, we have developed an enantioselective HDA
reaction between Rawal’s diene and a diverse range of
aldehydes catalyzed by 1 mol% of Rh2(S-BPTPI)4 to give,
after treatment with acetyl chloride, dihydropyranone derivatives
in good yields and with excellent enantioselectivities. This
represents the first example of a chiral Lewis acid-catalyzed
HDA reaction between Rawal’s diene and aldehydes. Efforts
to extend the scope of this process to other substrates such as
nitrogen-containing heterodienes are currently underway.
This research was supported in part by a Grant-in-Aid for
Scientific Research from the Japan Society of the Promotion
of Science (JSPS). We thank Ms S. Oka, and M. Kiuchi of the
Center for Instrumental Analysis at Hokkaido University for
mass measurements and elemental analysis.
Notes and references
1 For reviews on enantioselective HDA reactions, see: (a) K. A.
Jørgensen, in Cycloaddition Reactions in Organic Synthesis,
ed. S. Kobayashi and K. A. Jørgensen, Wiley-VCH, Weinheim,
2002, ch. 4.A; (b) V. Gouverneur and M. Reiter, Chem.–Eur. J.,
2005, 11, 5806; (c) L. Lin, X. Liu and X. Feng, Synlett, 2007, 2147;
(d) K. Ding, Chem. Commun., 2008, 909; (e) H. Pellissier,
Tetrahedron, 2009, 65, 2839.
2 (a) M. Bednarski, C. Maring and S. Danishefsky, Tetrahedron
Lett., 1983, 24, 3451; (b) M. Bednarski and S. Danishefsky, J. Am.
Chem. Soc., 1983, 105, 6968; (c) M. Bednarski and S. Danishefsky,
J. Am. Chem. Soc., 1986, 108, 7060.
15 For enantioselective HDA reactions of aldehydes with Danishefsky’s
diene or Brassad’s diene promoted by hydrogen bonding organo-
catalysts, see: (a) H. Du, D. Zhao and K. Ding, Chem.–Eur. J.,
2004, 10, 5964; (b) X. Zhang, H. Du, Z. Wang, Y.-D. Wu and
K. Ding, J. Org. Chem., 2006, 71, 2862.
3 For recent examples of asymmetric HDA reactions between
Danishefsky-type dienes and aldehydes catalyzed by chiral Lewis
acids, see: (a) A. Berkessel and N. Vogl, Eur. J. Org. Chem., 2006,
5029; (b) K. Seki, M. Ueno and S. Kobayashi, Org. Biomol. Chem.,
2007, 5, 1347; (c) A. Landa, B. Richter, R. L. Johansen,
A. Minkkila and K. A. Jørgensen, J. Org. Chem., 2007, 72, 240;
(d) Z. Yu, X. Liu, Z. Dong, M. Xie and X. Feng, Angew. Chem.,
Int. Ed., 2008, 47, 1308; (e) X.-B. Yang, J. Feng, J. Zhang,
N. Wang, L. Wang, J.-L. Liu and X.-Q. Yu, Org. Lett., 2008,
10, 1299; (f) H. Du, X. Zhang, Z. Wang, H. Bao, T. You and
K. Ding, Eur. J. Org. Chem., 2008, 2248; (g) S. Eno, H. Egami,
T. Uchida and T. Katsuki, Chem. Lett., 2008, 37, 632;
(h) W. Cha"adaj, P. Kwiatkowski and J. Jurczak, Tetrahedron
Lett., 2008, 49, 6810.
16 Jørgensen and co-workers reported that the HDA reaction
between Rawal’s diene and methyl pyruvate using 10 mol%
Cu(OTf)2-bis(oxazoline) led to a racemic mixture of cycloadduct
(product yield not given), see: S. Yao, M. Johannsen, H. Audrain,
R. G. Hazell and K. A. Jørgensen, J. Am. Chem. Soc., 1998, 120,
8599.
17 Rawal and co-workers reported that the enantioselective
Diels–Alder reaction of 1-(N-alkyl-N-alkoxycarbonylamino)-3-
siloxy-1,3-butadienes with a-substituted acroleins catalyzed by
Jacobsen’s chiral Cr(III)-salen complex afforded cycloadducts in high
yields with up to 97% ee, see: (a) Y. Huang, T. Iwama and
V. H. Rawal, J. Am. Chem. Soc., 2000, 122, 7843; (b) S. A. Kozmin,
T. Iwama, Y. Huang and V. H. Rawal, J. Am. Chem. Soc., 2002, 124,
4628.
4 For examples of asymmetric HDA reactions of Brassard’s diene
with aldehydes catalyzed by chiral Lewis acids, see: (a) A. Togni,
Organometallics, 1990, 9, 3106; (b) Q. Fan, L. Lin, J. Liu,
Y. Huang, X. Feng and G. Zhang, Org. Lett., 2004, 6, 2185;
(c) J. D. Winkler and K. Oh, Org. Lett., 2005, 7, 2421; (d) Q. Fan,
L. Lin, J. Liu, Y. Huang and X. Feng, Eur. J. Org. Chem., 2005,
3542; (e) L. Lin, Z. Chen, X. Yang, X. Liu and X. Feng, Org. Lett.,
2008, 10, 1311.
5 (a) M. P. Doyle, I. M. Phillips and W. Hu, J. Am. Chem. Soc.,
2001, 123, 5366; (b) M. P. Doyle, M. Valenzuela and P. Huang,
Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5391; (c) M. Valenzuela,
M. P. Doyle, C. Hedberg, W. Hu and A. Holmstrom, Synlett,
2004, 2425; (d) X. Wang, Z. Li and M. P. Doyle, Chem. Commun.,
2009, 5612.
18 Y. Huang and V. H. Rawal, Org. Lett., 2000, 2, 3321.
19 S. Kitagaki, H. Matsuda, N. Watanabe and S. Hashimoto, Synlett,
1997, 1171.
20 K. Minami, H. Saito, H. Tsutsui, H. Nambu, M. Anada and
S. Hashimoto, Adv. Synth. Catal., 2005, 347, 1483 and references
cited therein.
21 The HDA reaction between 2 and 3a in CH2Cl2 at 0 1C in the
absence of Rh(II) complex went to completion in 24 h to afford
(ꢂ)-5a in 83% yield after treatment with acetyl chloride.
22 The Rh2(S-BPTPI)4-catalyzed HDA reaction using a Danishefsky-
type diene in CH2Cl2 gave the following results: (a) 3r, 23 1C, 36 h,
75% yield, 89% ee; (b) 3s, 23 1C, 48 h, 70% yield, 83% ee; (c) 3t,
reflux, 24 h, 52% yield, 89% ee; (d) 3u, reflux, 48 h, 31% yield,
50% ee.
6 R. E. Forslund, J. Cain, J. Colyer and M. P. Doyle, Adv. Synth.
Catal., 2005, 347, 87.
23 For an overview, see: E. J. Corey and T. W. Lee, Chem. Commun.,
2001, 1321.
ꢁc
This journal is The Royal Society of Chemistry 2009
7296 | Chem. Commun., 2009, 7294–7296