Zhou and Larock
tions involving trisubstituted vinylic metal substrates
(metal ) B,11 Si,12 S,13 Zr,14 Sn,15 Te,16 etc.) or intermedi-
ates (metal ) Li,17 Mg,18 Ni,19 Cu,20 Zn,21 Pd,22 etc.) have
also been widely used in the synthesis of tetrasubstituted
olefins. However, these approaches are still fairly limited
in scope due to one or more of the following problems:
limited generality; poor regio- and/or stereoselectivity;
limited availability of starting materials; tedious multi-
step syntheses. Thus, developing an efficient, regio- and
stereoselective route to tetrasubstituted olefins is highly
desirable and a considerable challenge for the organic
chemist.
and ability to tolerate a wide range of important organic
functional groups.23 The carbopalladation of alkynes has
provided a versatile approach to various olefins and
heterocycles.24 The intermolecular Rh-,25 Ni-,26 and Pd-
catalyzed27 addition of arylboronic acids to alkynes has
been reported to produce di- and trisubstituted alkenes.
Some specific tetrasubstituted olefins have also been
prepared in a highly efficient manner by the intra-
molecular addition of arylpalladium intermediates to
internal alkynes followed by cross-coupling with boron,
tin, and zinc organometallics.28 Multicomponent reactions
have attracted much attention from chemists, because
they are highly atom-economical.29 For example, pal-
ladium-catalyzed tandem reactions involving organic
halides, unsaturated compounds (allene and norbornene),
and organometallics (organoboron and -tin reagents) have
been reported to furnish relatively complex products in
a one-pot reaction.30 The palladium-catalyzed sequential
haloallylation/Suzuki cross-coupling of alkynes has been
reported as a convenient synthetic route to highly func-
tionalized 1,4-dienes.31
Palladium-catalyzed reactions are versatile methods
for carbon-carbon bond formation due to their generality
(10) Gansauer, A.; Pierobon, M.; Bluhm, H. Angew. Chem., Int. Ed.
2002, 41, 3206.
(11) (a) Liu, X.; Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed.
2004, 43, 879. (b) Gerard, J.; Hevesi, L. Tetrahedron 2004, 60, 367. (c)
Shimizu, M.; Fujimoto, T.; Liu, X.; Minezaki, H.; Hata, T.; Hiyama, T.
Tetrahedron 2003, 59, 9811. (d) Suginome, M.; Yamamoto, A.; Mu-
rakami, M. J. Am. Chem. Soc. 2003, 125, 6358. (e) Shimizu, M.;
Fujimoto, T.; Minezaki, H.; Hata, T.; Hiyama, T. J. Am. Chem. Soc.
2001, 123, 6947. (f) Yang, F.; Cheng, C. J. Am. Chem. Soc. 2001, 123,
761. (g) Suginome, M.; Matsuda, T.; Nakamura, H.; Ito, Y. Tetrahedron
1999, 55, 8787. (h) Gerard, J.; Bietlot, E.; Hevesi, L. Tetrahedron Lett.
1998, 39, 8735.
Recently, we communicated a highly efficient pal-
ladium-catalyzed synthesis of tetrasubstituted olefins
involving the intermolecular coupling of an aryl iodide,
an internal alkyne, and an arylboronic acid (eq 1).32,33
Herein, we provide a full account of the scope and
limitations of this chemistry. Modified, mild, room-
(12) (a) Itami, K.; Kamei, T.; Yoshida, J. J. Am. Chem. Soc. 2003,
125, 14670. (b) Itami, K.; Nokami, T.; Ishimura, Y.; Mitsudo, K.; Kamei,
T.; Yoshida, J. J. Am. Chem. Soc. 2001, 123, 11577. (c) Al-Hassan, M.
I.; Miller, R. B. J. Saudi Chem. Soc. 2001, 5, 67.
(13) (a) Itami, K.; Mineno, M.; Muraoka, N.; Yoshida, J. J. Am.
Chem. Soc. 2004, 126, 11778. (b) Gerard, J.; Hevesi, L. Tetrahedron
2004, 60, 367. (c) Nickon, A.; Rodriguez, A. D.; Shirhatti, V.; Ganguly,
R. J. Org. Chem. 1985, 50, 4218.
(14) Takahashi, T.; Xi, C.; Ura, Y.; Nakajima, K. J. Am. Chem. Soc.
2000, 122, 3228.
(15) (a) Konno, T.; Takehana, T.; Chae, J.; Ishihara, T.; Yamanaka,
H. J. Org. Chem. 2004, 69, 2188. (b) Beletskaya, I. P.; Kazankova, M.
A. Polyhedron 2000, 19, 597. (c) Shirakawa, E.; Yamasaki, K.; Yoshida,
H.; Hiyama, T. J. Am. Chem. Soc. 1999, 121, 10221. (d) Piers, E. Pure
Appl. Chem. 1988, 60, 107. (e) Piers, E.; Skerlj, R. T. J. Chem. Soc.,
Chem. Commun. 1987, 1025. (f) Piers, E.; Skerlj, R. T. J. Org. Chem.
1987, 52, 4421. (g) Chu, K. H.; Wang, K. K. J. Org. Chem. 1986, 51,
767.
(23) (a) Trost, B. Science 1991, 234, 1471. (b) Tsuji, J. Palladium
Reagents and Catalysis: New Perspectives for the 21st Century; John
Wiley & Sons: New York, 2004. (c) Handbook of Organopalladium
Chemistry for Organic Synthesis; Negishi, E., Ed.; John Wiley &
Sons: New York, 2002.
(24) For reviews, see ref 23c. For other representative examples,
see: (a) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991, 113, 6689.
(b) Sugihara, T.; Coperet, C.; Owczarczyk, Z.; Harring, L.; Negishi, E.
J. Am. Chem. Soc. 1994, 116, 7923. (c) Gevorgyan, V.; Quan, L.;
Yamamoto, Y. Tetrahedron Lett. 1999, 40, 4089. (d) Yoshikawa, E.;
Yamamoto, Y. Angew. Chem., Int. Ed. 2000, 39, 173. (e) Larock, R. C.;
Reddy, C. K. J. Org. Chem. 2002, 67, 2027.
(16) Marino, J. P.; Nguyen, H. N. J. Org. Chem. 2002, 67, 6291.
(17) (a) Hojo, M.; Murakami, Y.; Aihara, H.; Sakuragi, R.; Baba, Y.;
Hosomi, A. Angew. Chem., Int. Ed. 2001, 40, 621 and references
therein. (b) Begue, J.; Bonnet-Delpon, D.; Bouvet, D.; Rock, M. H. J.
Org. Chem. 1996, 61, 9111. (c) Maercker, A.; Girreser, U. Tetrahedron
1994, 50, 8019. (d) Gurudutt, K. N.; Ravindranath, B. Tetrahedron
Lett. 1980, 21, 1173.
(18) (a) Snider, B. B.; Karras, M.; Conn, R. S. E. J. Am. Chem. Soc.
1978, 100, 4624. (b) Conn, R. S. E.; Karras, M.; Snider, B. B. Isr. J.
Chem. 1984, 24, 108. (c) Tessier, P. E.; Penwell, A. J.; Souza, F. E. S.;
Fallis, A. G. Org. Lett. 2003, 5, 2989.
(19) (a) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003,
42, 1364. (b) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997,
119, 9065. (c) Montgomery, J.; Savchenko, A. V. J. Am. Chem. Soc.
1996, 118, 2099.
(20) (a) Zhu, N.; Hall, D. G. J. Org. Chem. 2003, 68, 6066. (b) Wipf,
P.; Smitrovich, J. H.; Moon, C. W. J. Org. Chem. 1992, 57, 3178. (c)
Rao, S. A.; Knochel, P. J. Am. Chem. Soc. 1991, 113, 5735. (d)
Germanas, J.; Vollhardt, K. P. C. Synlett 1990, 505. (e) Corey, E. J.;
Chen, R. H. K. Tetrahedron Lett. 1973, 14, 1611. (f) Corey, E. J.;
Katzenellenbogen, J. A. J. Am. Chem. Soc. 1969, 91, 1851.
(21) (a) Stuedemann, T.; Knochel, P. Angew. Chem., Int. Ed. Engl.
1997, 36, 93. (b) Studemann, T.; Ibrahim-Ouali, M.; Knochel, P.
Tetrahedron 1998, 54, 1299.
(22) (a) Ma, S.; Jiao, N.; Ye, L. Chem.sEur. J. 2003, 9, 6049. (b)
Rathore, R.; Deselnicu, M. I.; Burns, C. L. J. Am. Chem. Soc. 2002,
124, 14832. (c) Anastasia, L.; Dumond, Y.; Negishi, E. Eur. J. Org.
Chem. 2001, 16, 3039. (d) Bauer, A.; Miller, M. W.; Vice, S. F.;
McCombie, S. W. Synlett 2001, 254. (e) Wang, Z.; Lu, X. Chem.
Commun. 1996, 535. (f) Ma, S.; Lu, X. J. Chem. Soc., Chem. Commun.
1990, 733. (g) Takahashi, A.; Kirio, Y.; Sodeoka, M.; Sasai, H.;
Shibasaki, M. J. Am. Chem. Soc. 1989, 111, 643. (h) Al-Hassan, M. I.
Synth. Commun. 1989, 19, 1619. (i) Tsuda, T.; Yoshida, T.; Saegusa,
T. J. Org. Chem. 1988, 53, 607. (j) Al-Hassan, M. I. Synthesis 1987, 9,
816. (k) Miller, R. B.; Al-Hassan, M. I. J. Org. Chem. 1985, 50, 2121.
(l) Tsuji, J.; Nogi, T. J. Am. Chem. Soc. 1966, 88, 1289.
(25) (a) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Am. Chem.
Soc. 2000, 122, 10464. (b) Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou,
K.; Martin-Matute, B. J. Am. Chem. Soc. 2001, 123, 5358. (c) Hayashi,
T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. J. Am. Chem. Soc. 2001,
123, 9918. (d) Lautens, M.; Yoshida, M. Org. Lett. 2002, 4, 123.
(26) Shirakawa, E.; Takahashi, G.; Tsuchimoto, T.; Kawakami, Y.
Chem. Commun. 2001, 2688.
(27) (a) Oh, C.; Jung, H.; Kim, K.; Kim, N. Angew. Chem., Int. Ed.
2003, 42, 805. (b) Oh, C.; Ryu, J. Bull. Korean Chem. Soc. 2003, 24,
1563. (c) For highly substituted 1,3-dienes, see: Satoh, T.; Ogino, S.;
Miura, M.; Nomura, M. Angew. Chem., Int. Ed. 2004, 43, 5063.
(28) (a) Burns, B.; Grigg, R.; Sridharan, V.; Stevenson, P.; Sukirthal-
ingam, S.; Worakun, T. Tetrahedron Lett. 1989, 30, 1135. (b) Grigg,
R.; Sandano, J. M.; Santhakumar, V.; Sridharan, V.; Thangavelan-
thum, R.; Thornton, P. M.; Wilson, D. Tetrahedron 1997, 53, 11803.
(c) Grigg, R.; Sridharan, V. Pure Appl. Chem. 1998, 70, 1047. (d) Grigg,
R.; Sridharan, V. J. Organomet. Chem. 1999, 576, 65. (e) Poli, G.;
Giambastiani, G.; Heumann, A. Tetrahedron 2000, 56, 5959. (f)
Fretwell, P.; Grigg, R.; Sansano, J. M.; Sridharan, V.; Sukirthalingam,
S.; Wilson, D.; Redpath, J. Tetrahedron 2000, 56, 7525.
(29) (a) Balme, G.; Bossharth, E.; Monteiro, N. Eur. J. Org. Chem.
2003, 21, 4101. (b) Weber, L. Curr. Med. Chem. 2002, 9, 2085.
(30) (a) Yang, F. Y.; Wu, M. Y.; Cheng, C. H. J. Am. Chem. Soc.
2000, 122, 7122. (b) Huang, T. H.; Chang, H. M.; Wu, M. Y.; Cheng,
C. H. J. Org. Chem. 2002, 67, 99. (c) Shaulis, K. M.; Hoskin, B. L.;
Townsend, J. R.; Goodson, F. E.; Incarvito, C. D.; Rheingold, A. L. J.
Org. Chem. 2002, 67, 5860. (d) Jeganmohan, M.; Shanmugasundaram,
M.; Cheng, C. H. Org. Lett. 2003, 5, 881. (e) Jeganmohan, M.;
Shanmugasundaram, M.; Cheng, C. H. Chem. Commun. 2003, 1746.
(f) Yang, F. Y.; Shanmugasundaram, M.; Chuang, S. Y.; Ku, P. J.; Wu,
M. Y.; Cheng, C. H. J. Am. Chem. Soc. 2003, 125, 12576.
(31) Thadani, A. N.; Rawal, V. H. Org. Lett. 2002, 4, 4317.
(32) Zhou, C.; Emrich, D. E.; Larock, R. C. Org. Lett. 2003, 5, 1579.
(33) For another report involving the reaction of vinylic halides,
internal alkynes, and boronic acids, see: Zhang, X.; Larock, R. C. Org.
Lett. 2003, 5, 2993.
3766 J. Org. Chem., Vol. 70, No. 10, 2005