Photoreduction of 9,10ꢀphenanthrenequinone
Russ.Chem.Bull., Int.Ed., Vol. 53, No. 11, November, 2004 2489
4. P. P. Levin, T. A. Kokrashvilli, and V. A. Kuzmin, Izv.
Akad. Nauk SSSR, Ser. Khim., 1983, 284 [Bull. Acad. Sci.
USSR, Div. Chem. Sci., 1983, 32, 251 (Engl. Transl.)].
5. A. B. Belyaev, V. A. Kuzmin, and P. P. Levin, Izv. Akad.
Nauk SSSR, Ser. Khim., 1988, 1007 [Bull. Acad. Sci. USSR,
Div. Chem. Sci., 1988, 37, 877 (Engl. Transl.)].
6. S. G. Cohen and G. Parsons, J. Am. Chem. Soc, 1970,
92, 7603.
7. C. A. Chesnokov, V. K. Cherkasov, Yu. V. Chechet, V. I.
Nevodchikov, G. A. Abakumov, and O. N. Mamysheva, Izv.
Akad. Nauk SSSR, Ser. Khim., 2000, 1515 [Russ. Chem. Bull.,
Int. Ed., 2000, 49, 1506].
8. A. J. Gordon and R. A. Ford, The Chemist’s Companion,
A WileyꢀIntercience Publication John Wiley and Sons, New
York—London—Sydney—Toronto, 1972.
9. C. Weigand and G. Hilgetag, Organisch chemische
Experimentierkunst, Verlag, Leipzig, 1964.
while the exothermic region contains reaction pairs 1—2.
As ∆Ge increases (i.e., on going from negative to posiꢀ
tive ∆Ge), the ϕH values increase, reach a maximum at
∆Ge = +0.01 eV (reactant pair 1—3f), and then decrease
(system 1—2).
It has previously been shown7 that for the fluoreꢀ
none—3 system ∆Ge changes from –0.44 eV to +0.53 eV;
the plot ϕH = f(∆Ge) is also extreme, and the ϕH maxiꢀ
mum is observed at ∆Ge = +0.06 eV. For the system
2,3,5,6ꢀtetrachloroꢀ1,4ꢀbenzoquinone—2, ∆Ge varies
from –0.30 to +0.52 eV; with an increase in ∆Ge, the kH
values increase, reach a maximum at ∆Ge = +0.09 eV, and
then decrease.16 A similar result was obtained7 for the
photoreduction of a series of eight similar in structure
oꢀbenzoquinones in the presence of N,Nꢀdimethylanilines
3d, 3e, and 3f. In this case, the redox characteristics of
both photoacceptors and H donors changed. Three exꢀ
10. K. Maruyama, K. Ono, and J. Osugi, Bull. Chem. Soc. Jpn,
1972, 45, 847.
treme plots kH = f(E1/2(A /A)) were obtained, and on
11. J. A. Barltrop and J. D. Coyle, Excited States in Organic
Chemistry, John Wiley and Sons, London—New York—
Sydney—Toronto, 1975.
12. S. Patai, The Chemistry of the Quinonoid Compounds, John
Wiley and Sons, Chichester—New York—Brisbane—
Toronto—Singapore, 1988, 2, 878 pp.
13. D. N. Shigorin, L. Sh. Tushishvili, A. A. Shcheglova, and
N. S. Dokunikhin, Zh. Fiz. Khim., 1971, 45, 511 [J. Phys.
Chem. USSR, 1971, 45 (Engl. Transl.)].
•–
going to coordinates kH = f(∆Ge) they ran into one plot
with a maximum at ∆Ge = +0.09 eV. A comparison of the
obtained data shows that for all reaction systems under
study the maximum values of ϕH and/or kH correspond to
pairs of reactants, whose ∆Ge is close to zero. On going
from zero to the endothermic or exothermic region of
∆Ge, the ϕH and/or kH values decrease.
Thus, the study of the kinetics of 9,10ꢀphenanthreneꢀ
quinone photoreduction in the presence of hydrogen doꢀ
nors (pꢀsubstituted N,Nꢀdimethylanilines and polymethylꢀ
benzenes) showed that the quantum yield of photoreducꢀ
tion and apparent reaction rate constant exhibit an exꢀ
treme change with an increase in the oxidation potential
of hydrogen donors. In the presence of amines, the ϕH
and kH values increase as a whole, while they decrease in
the presence of polymethylbenzenes. In the coordinates
ϕH—∆Ge (change in the free energy of electron transfer),
for pairs quinone—Н donor, ϕH increases as the ∆Ge valꢀ
ues approach to zero in both cases: this occurs in the
exothermic region of ∆Ge (∆Ge < 0) for the series of amines
and in the endothermic region (∆Ge > 0) for the polyꢀ
methylbenzene series.
14. Ch. K. Mann and K. K. Barnes, Elektrochemical Reactions in
Nonaqueous Systems, Marcel Decker, Inc., New York, 1970.
15. G. Jones, W. A. Haney, and X. T. Phan, J. Am. Chem. Soc.,
1988, 110, 1923.
16. S. A. Chesnokov, G. A. Abakumov, V. K. Cherkasov, and
M. P. Shurygina, Dokl. Akad. Nauk, 2002, 385, 780 [Dokl.
Chem., 2002 (Engl. Transl.)].
17. D. Rehm and A. Weller, Ber. Bunsenges. Phys. Chem., 1969,
73, 834.
18. S. G. Cohen, A. Parola, and G. H. Parsons, Chem. Rev.,
1973, 73, 141.
19. P. P. Levin and V. A. Kuzmin, Usp. Khim., 1987, 56, 527
[Russ. Chem. Rev., 1987, 56 (Engl. Transl.)].
20. S. Fukuzumi, S. Itoh, T. Komori, T. Suenobu, A. Ishida,
M. Fujitsuka, and O. Ito, J. Am. Chem. Soc., 2000, 122, 8435.
21. H. Miyasaka, K. Morita, K. Kamada, and N. Mataga, Bull.
Chem. Soc. Jpn, 1990, 63, 3385.
22. K. S. Peters, A. Cashin, and P. Timbers, J. Am. Chem. Soc.,
2000, 122, 107.
23. S. Arimitsu, H. Masuhara, N. Mataga, and H. Tsubomura,
J. Phys. Chem., 1975, 79, 1255.
This work was financially supported by the Foundaꢀ
tion of the President of the Russian Federation (Grant
NShꢀ1649.2003.3).
24. H. Knibbe, D. Rehm, and A. Weller, Ber. Bunsenges. Phys.
Chem., 1969, 73, 839.
References
25. H. Leonhardt and A. Weller, Ber. Bunsenges. Phys. Chem.,
1963, 67, 791.
26. D. M. Grebenshchikov, N. A. Kovriginykh, and R. N.
Personov, Optika i Spektroskopiya [Optics and Spectroscopy],
1971, 30, 63 (in Russian).
1. S. Patai, The Chemistry of the Quinonoid Compounds, John
Wiley and Sons, London—New York—Sydney—Toronto,
1974, 616.
2. Einführung in die photochemie, Ed. G. O. Bekker, VEB
Deutscher Verlag der Wissenschaften, Berlin, 1976.
3. P. P. Levin and V. A. Kuzmin, Izv. Akad. Nauk SSSR, Ser.
Khim., 1986, 2587 [Bull. Acad. Sci. USSR, Div. Chem. Sci.,
1986, 35, 2372 (Engl. Transl.)].
Received June 30, 2004