UPDATES
Sanaa Musa et al.
5996; b) M. S. Viciu, S. P. Nolan, in: Modern Arylation
Methods, (Ed: L. Ackermann), Wiley-VCH, Weinheim,
2009, pp 183–220; c) R. R. Tykwinski, Angew. Chem.
2003, 115, 1604–1606; Angew. Chem. Int. Ed. 2003, 42,
1566–1568; d) A. Zapf, M. Beller, Top. Catal. 2002, 19,
101–109; e) C. Deraedt, D. Astruc, Acc. Chem. Res.
2014, 47, 494–503; f) T. Hundertmark, A. F. Littke, S. L.
Buchwald, G. C. Fu, Org. Lett. 2000, 2, 1729–1731;
g) D. Gelman, D. Tsvelikhovsky, G. A. Molander, J.
Blum, J. Org. Chem. 2002, 67, 6287–6290.
Experimental Section
General Procedure for the Catalytic Transfer
Semihydrogenation of Alkynes
A single-use screw-capped reaction tube was charged with 3
(1% mol) and sodium formate (20% mol) in 1,2-demethoxy-
ethane (1 mL). The alkyne (50 mg) and formic acid (2 equiv-
alents) were injected and the mixture was heated at 908C in
oil bath for the specified time. Products were isolated after
a standard work-up and purified, if needed, by flash chroma-
tography.
[6] a) P. Hauwert, G. Maestri, J. W. Sprengers, M. Catella-
ni, C. J. Elsevier, Angew. Chem. 2008, 120, 3267–3270;
Angew. Chem. Int. Ed. 2008, 47, 3223–3226; b) T. L.
Gianetti, N. C. Tomson, J. Arnold, R. G. Bergman, J.
Am. Chem. Soc. 2011, 133, 14904–14907; c) K. Semba,
T. Fujihara, T. Xu, J. Terao, Y. Tsuji, Adv. Synth. Catal.
2012, 354, 1542–1550; d) R. M. Drost, T. Bouwens, N. P.
van Leest, B. de Bruin, C. J. Elsevier, ACS Catal. 2014,
4, 1349–1357; e) E. D. Slack, C. M. Gabriel, B. H. Lip-
shutz, Angew. Chem. 2014, 126, 14275–14278; Angew.
Chem. Int. Ed. 2014, 53, 14051–14054; f) K. K. Tanabe,
M. S. Ferrandon, N. A. Siladke, S. J. Kraft, G. Zhang, J.
Niklas, O. G. Poluektov, S. J. Lopykinski, E. E. Bunel,
T. R. Krause, J. T. Miller, A. S. Hock, S. T. Nguyen,
Angew. Chem. 2014, 126, 12251–12254; Angew. Chem.
Int. Ed. 2014, 53, 12055–12058; g) E. Vasilikogiannaki,
I. Titilas, G. Vassilikogiannakis, M. Stratakis, Chem.
Commun. 2015, 51, 2384–2387; h) Y. S. Wagh, N. Asao,
J. Org. Chem. 2015, 80, 847–851.
[7] a) I. N. Michaelides, D. J. Dixon, Angew. Chem. 2013,
125, 836–838; Angew. Chem. Int. Ed. 2013, 52, 806–808;
b) A. Furstner, P. W. Davies, Chem. Commun. 2005,
2307–2320; c) D. Srimani, Y. Diskin-Posner, Y. Ben-
David, D. Milstein, Angew. Chem. 2013, 125, 14381–
14384; Angew. Chem. Int. Ed. 2013, 52, 14131–14134;
d) T. Chen, J. Xiao, Y. Zhou, S. Yin, L.-B. Han, J. Orga-
nomet. Chem. 2014, 749, 51–54; e) B. M. Trost, Z. T.
Ball, T. Joege, J. Am. Chem. Soc. 2002, 124, 7922–7923;
f) J. Li, R.-M. Hua, Chem. Eur. J. 2011, 17, 8462–8465;
g) E. Shirakawa, H. Otsuka, T. Hayashi, Chem.
Commun. 2005, 5885–5886.
[8] a) C. Azerraf, A. Shpruhman, D. Gelman, Chem.
Commun. 2009, 466–468; b) S. Musa, A. Shpruhman,
D. Gelman, J. Organomet. Chem. 2012, 699, 92–95.
[9] a) S. Musa, I. Shaposhnikov, S. Cohen, D. Gelman,
Angew. Chem. 2011, 123, 3595–3599; Angew.Chem. Int.
Ed. 2011, 50, 3533–3537; b) S. Musa, L. Ackermann, D.
Gelman, Adv. Synth. Catal. 2013, 355, 3077–3080; c) S.
Musa, R. Romm, C. Azerraf, S. Kozuch, D. Gelman,
Dalton Trans. 2011, 40, 8760–8763; d) K. Oded, S.
Musa, D. Gelman, J. Blum, Catal. Commun. 2012, 20,
68–70; e) S. Musa, S. Fronton, L. Vaccaro, D. Gelman,
Organometallics 2013, 32, 3069–3073.
[10] S. Musa, O. A. Filippov, N. V. Belkova, E. S. Shubina,
G. A. Silantyev, L. Ackermann, D. Gelman, Chem. Eur.
J. 2013, 19, 16906–16909.
[11] The manuscript describing detailed studies of the
formic acid dehydrogenation is under preparation.
[12] a) S. Cho, S. Kang, G. Keum, S. B. Kang, S.-Y. Han, Y.
Kim, J. Org. Chem. 2003, 68, 180–182; b) T. Nishikubo,
T. Iizawa, K. Kobayashi, M. Okawara, Tetrahedron
Lett. 1981, 22, 3873–3874.
Acknowledgements
This research was partially supported by the Israel Science
Foundation (ISF), Ministry of Science and the German-Isra-
eli Science Foundation (GIF).
References
[1] a) S. G. Van Ornum, R. M. Champeau, R. Pariza,
Chem. Rev. 2006, 106, 2990–3001; b) P. Kocovsky, Elec-
trophilic Addition to C=X Bonds, in: Chemistry of
Functional Groups: The Chemistry of Double-Bonded
Functional Groups, (Ed.: S. Patai); Wiley, Chichester,
1997, pp 1135–1222; c) A. H. Hoveyda, R. R. Schrock,
Comprehensive Asymmetric Catalysis Suppement, Vol.
1, Springer, Berlin, Heidelberg, 2004, pp 207–233;
d) G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev.
2010, 110, 1746–1787; e) D. H. Woodmansee, A. Pfaltz,
Chem. Commun. 2011, 47, 7912–7916; f) Y. Zhu, K.
Burgess, Acc. Chem. Res. 2012, 45, 1623–1636; g) A. B.
Dounay, L. E. Overman, in: Mizoroki–Heck Reaction,
(Ed.: M. Oestreich, Wiley, Chicester, 2009, pp 533–568.
[2] a) C. Zhao, M. R. Crimmin, F. D. Toste, R. G. Bergman,
Acc. Chem. Res. 2014, 47, 517–529; b) T. Besset, T.
Poisson, X. Pannecoucke, Chem. Eur. J. 2014, 20,
16830–16845; c) S. A. Testero, A. G. Suarez, R. A. Spa-
nevello, M. I. Mangione, Trends Org. Chem. 2003, 10,
35–49; d) H. Grennberg, J.-E. Baeckvall, in: Transition
Metals for Organic Synthesis, (Eds.: M. Beller, C.
Bolm), Vol. 2, Wiley-VCH, Weinheim, 2004, pp 243–
255; e) B. M. Trost, M. L. Crawley, Top. Organomet.
Chem. 2011, 38, 321–340.
[3] a) J. Y. W. Mak, R. H. Pouwer, C. M. Williams, Angew.
Chem. Int. Ed. 2014, 53, 13664–13688; b) N. Allard, M.
Leclerc, in: Conjugated Polymers for Organic Electron-
ics, Walter de Gruyter, Berlin, 2014, pp 121–138; c) J. C.
Mol, Top. Catal. 2004, 27, 97–104; d) S. M. Sadrameli,
Fuel 2015, 140, 102–115; e) R. Jira, Oxidation: Oxida-
tion of olefins to carbonyl compounds (Wacker pro-
cess), Vol. 1, Wiley-VCH, Weinheim, 2002, pp 386–405;
f) F. Ungvary, Coord. Chem. Rev. 2007, 251, 2087–2102.
[4] a) W.-Y. Siau, Y. Zhang, Y. Zhao, Top. Curr. Chem.
2012, 327, 33–58; b) C. Deraedt, M. d’Halluin, D.
Astruc, Eur. J. Inorg. Chem. 2013, 2013, 4881–4908;
c) A. H. Hoveyda, J. Org. Chem. 2014, 79, 4763–4792.
[5] a) D. Gelman, S. L. Buchwald, Angew. Chem. 2003,
115, 6175–6178; Angew. Chem. Int. Ed. 2003, 42, 5993–
2356
ꢁ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2015, 357, 2351 – 2357