C O M M U N I C A T I O N S
Table 2. Modified Cinchona Alkaloid-Catalyzed Asymmetric
versatility of the acetal functionality, this reaction provides a new,
practical, and broadly applicable approach toward chiral building
blocks bearing quaternary stereocenters. Although, to our knowl-
edge, previously unexplored in asymmetric synthesis, acetal ketones
7 demonstrate unusual reactivity and selectivity toward the enan-
tioselective cyanosilylation, thereby suggesting that they may be
interesting substrates for other catalytic enantioselective reactions.
Cyanosilylation of Acetal Ketonesa
Acknowledgment. We are grateful for the generous financial
support from NIH (GM-61591), Daiso, and an Alfred P. Sloan
research fellowship (L.D.).
Supporting Information Available: Experimental procedures and
characterization of the products (PDF). This material is available free
References
(1) For reviews on the enantioselective construction of quaternary stereo-
centers, see: (a) Christoffers, J.; Mann, A. Angew. Chem, Int. Ed. 2001,
40, 4591. (b) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed.
1998, 37, 388. (c) Fuji, K. Chem. ReV. 1993, 93, 2037. (d) Martin, S. F.
Tetrahedron 1980, 36, 419.
(2) For reviews on the preparation and application of cyanohydrins, see: (a)
Gregory, R. J. H. Chem. ReV. 1999, 99, 3649. (b) Effenberger, F. Angew.
Chem., Int. Ed. Engl. 1994, 33, 1555. (c) North, M. Synlett 1993, 807.
(3) Deng, H.; Isler, M. P.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem,
Int. Ed. 2002, 41, 1009.
(4) (a) Hamashima, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2000,
122, 7412. (b) Yabu, K.; Masumoto, S.; Yamasaki, S.; Hamashima, Y.;
Kanai, M.; Du, W.; Curran, D. P.; Shibasaki, M. J. Am. Chem. Soc. 2001,
123, 9908. (c) Hamashima Y.; Kanai, M.; Shibasaki, M. Tetrahedron Lett.
2001, 42, 691. (d) Masumoto, S.; Kazuo, Y.; Motomu, K.; Shibasaki, M.
Tetrahedron Lett. 2002, 43, 2919. (e) Shibasaki, M.; Masumoto, S.; Suzuki,
M.; Kanai, M. Tetrahedron Lett. 2002, 43, 8647. (f) Yabu, K.; Masumoto,
S.; Kanai, M.; Du, W.; Curran, D. P.; Shibasaki, M. Heterocycles 2003,
59, 369. (g) Fujii, K.; Maki, K.; Kanai, M.; Shibasaki, M. Org. Lett. 2003,
5, 733.
a Unless specified, the reaction was performed by treatment of the ketone
(0.20 mmol) with TMSCN (3.0 equiv) and the catalyst in chloroform (0.20
mL). b The reaction was run with 2.0 equiv of TMSCN in ethyl acetate.
c Isolated yield. d Determined by HPLC or GC analysis as described in the
Supporting Information. e The absolute configuration is determined to be
R as described in the Supporting Information.
(5) Chen, F.; Feng, X.; Bo, Z.; Zhang, G.; Jiang, Y. Org. Lett. 2003, 5, 949.
(6) Belokon, Y. N.; Green, B.; Ikonnikov, N. S.; North, M.; Parsons, T.;
Tararov, V. I. Tetrahedron 2001, 57, 771.
(7) Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195.
(8) For other recent examples of catalytic enantioselective nucleophilic
addition to ketones, see: (a) Evans, D. A.; Burgey, C. S.; Kozlowsky, M.
C.; Tregay, S. W. J. Am. Chem. Soc. 1999, 121, 686. (b) Evans, D. A.;
Johnson, J. Acc. Chem. Res. 2000, 33, 325. (c) Denmark, S. E.; Fan, Y.
J. Am. Chem. Soc. 2002, 124, 4233. (d) Waltz, K. M.; Gavenonis, J.;
Walsh, P. J. Angew. Chem, Int. Ed. 2002, 41, 3697. (e) Garcia, C.;
LaRochelle, L. K.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 10970. (f)
DiMauro, E. F.; Kozlowski, M. C. J. Am. Chem. Soc. 2002, 124, 12666.
(g) DiMauro, E. F.; Kozlowski, M. C. Org. Lett. 2002, 4, 3781.
(9) For the structures of the commercially available modified cinchona
alkaloids, see the Supporting Information.
Scheme 3. Catalytic Enantioselective Synthesis of Amino Alcohols
Bearing Quaternary Stereocenters
(10) For recent reviews, see: (a) Yoon, T. P.; Jacobsen, E. N. Science 2003,
299, 1691-1693. (b) Kacprzak, K.; Gawronski, J. Synthesis 2001, 961.
(11) (a) Chen, Y.-G.; Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2000, 122, 9542.
(b) Chen, Y.-G.; Deng, L. J. Am. Chem. Soc. 2001, 123, 11302. (c) Hang,
J.-F.; Tian, S.-K.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2001, 123, 12696.
(d) McDaid, P.; Chen, Y.-G.; Deng, L. Angew. Chem, Int. Ed. 2002, 41,
338. (e) Tang, L.; Deng, L. J. Am. Chem. Soc. 2002, 124, 2870. (f) Hang,
J.-F.; Li, H.-M.; Deng, L. Org. Lett. 2002, 4, 3321.
(12) (a) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka,
T. J. Am. Chem. Soc. 2002, 124, 6626. (b) Taggi, A. E.; Hafez, A. M.;
Wack, H.; Young, B.; Drury, W. J.; Lectka, T. J. Am. Chem. Soc. 2000,
122, 7831. (c) Wack, H.; Taggi, A. E.; Hafez, A. M.; Drury, W. J.; Lectka,
T. J. Am. Chem. Soc. 2001, 123, 1531.
(13) (a) Cortez, G. S.; Tennyson, R. L.; Romo, D. J. Am. Chem. Soc. 2001,
123, 7945. (b) Wynberg, H.; Staring, J. J. Am. Chem. Soc. 1982, 104,
166.
We have applied this cyanosilylation to the synthesis of several
optically active multifunctional chiral building blocks bearing a
quaternary stereocenter (10-12j, 12d, Scheme 3). Especially
noteworthy is the synthesis of 12d, which contains a quaternary
stereocenter bearing two substituents that are highly analogous to
each other in terms of both steric and electronic properties.
In summary, we have developed the first highly enantioselective
cyanosilylation of ketones catalyzed by a chiral Lewis base. The
reaction employs commercially available and fully recyclable
catalysts, involves a simple experimental procedure, and is exceed-
ingly general for acetal ketone 7. Coupled with the synthetic
(14) Calter, M. A. J. Org. Chem. 1996, 61, 8006.
(15) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem.
Soc. 1999, 121, 10219.
(16) Kobayashi, S.; Yoshikazu, T.; Mukaiyama, T. Chem. Lett. 1991, 537.
(17) Kruchok, I. S.; Gerus, I. I.; Kukhar, V. P. Tetrahedron 2000, 56, 6533.
(18) Choi, M. C. K.; Chan, S.-S.; Chan, M.-K.; Kim, J.-C.; Matsumoto, K.
Heterocycles 2002, 58, 645.
(19) As described in the Supporting Information, a wide variety of R,R-dialkoxy
ketones (6a-c, 7a-m) can be prepared from commercially available
reagents such as R,R-dialkoxyacetonitrile, arylglyoxal monohydrate, and
1,3-dihydroxyacetone dimer in one or two steps.
(20) Simple ketones afford generally modest enantioselectivity (10-76% ee).
(21) For experimental details, see the Supporting Information.
JA036222P
9
J. AM. CHEM. SOC. VOL. 125, NO. 33, 2003 9901