Chemistry Letters Vol.32, No.7 (2003)
605
The signal disappeared with the addition of superoxide dismu-
tase (320 U/mL). Hfsc’s of 3-OH and 3-OOH are listed in En-
tries 3 and 4 of Table 1.
found that the partition coefficient of the methyl derivative 3a
attained 0.7.
We succeeded in synthesizing lipophilic phosphoryl DMPO
analogues. These analogues are suitable for spin trapping ex-
periments that involve interfacially-generated (between the cell
and the outer sphere) or intracellularly-generated free radicals.
O
P
R
O
P
R
OOH
O2
N
O
N
O
References and Notes
3
3-OOH
1
a) ‘‘Oxidative Stress,’’ ed. by H. Sies, Academic Press, Lon-
don (1985). b) B. Halliwell and J. M. C. Gutteridge, ‘‘Free
Radicals in Biology and Medicine,’’ 2nd. ed., Oxford Uni-
versity Press, Oxford (1989).
Scheme 3.
2
3
a) E. G. Janzen and J. I.-P. Liu, J. Magn. Reson., 9, 510
(1973). b) E. G. Janzen and D. L. Haire, in ‘‘Advances in
Free Radical Chemistry,’’ JAI Press, Inc., (1990), p 253.
a) E. Finkelstein, G. M. Rosen, and E. J. Rauckman, Arch.
Biochem. Biophys., 200, 1 (1980). b) G. M. Rosen and E.
Finkelstein, Adv. Free Radical Biol. Med., 1, 345 (1985).
c) J. R. Harbour, V. Chow, and J. R. Bolton, Can. J. Chem.,
52, 3549 (1974). d) G. R. Buettner, Free Radical Biol. Med.,
3, 259 (1987). e) S. Pou, D. J. Hassett, E. B. Britigan, M. S.
Cohen, and G. M. Rosen, Anal. Biochem., 177, 1 (1989).
E. Finkelstein, G. M. Rosen, and E. J. Rauckman, J. Am.
Chem. Soc., 102, 4994 (1980).
4
5
Figure 2. ESR Spectra of spin adducts obtained by
the reaction with superoxide radicals (a) 3a-OOH
(pH 7.4); 3b-OOH (pH 7.4).
a) G. M. Rosen, E. Finkelstein, and E. J. Rauckman, Arch.
Biochem. Biophys., 215, 367 (1982). b) M. J. Turner, III and
G. M. Rosen, J. Med. Chem., 29, 2439 (1986).
6
a) D. L. Haire, J. W. Hilborn, and E. G. Janzen, Can. J.
Chem., 60, 1514 (1982). b) E. G. Janzen and Y.-K. Zhang,
J. Org. Chem., 60, 5441 (1995). c) V. Roubaud, A. Mercier,
G. Olive, F. L. Moigne, and P. Tordo, J. Chem. Soc., Perkin
Trans. 2, 1997, 1827. d) R. Sato, K. Ito, H. Igarashi, M.
Uejima, K. Nakanishi, and M. Takeishi, Chem. Lett.,
1998, 1059.
Table 1. Hyperfine splitting constants of pyrroline N-oxide 3
adduct (mT)
Entry
Spin adduct
AN
Ab-H
AP
1
2
3
4
3a-OH
3b-OH
3a-OOH
3b-OOH
1.42
1.34
1.24
1.22
2.18
2.00
1.21
1.18
3.64
3.95
4.17
4.61
7
a) H. Karoui, C. Nsanzumuhire, F. L. Moigne, and P. Tordo,
J. Org. Chem., 64, 1471 (1999). b) Y.-K. Xu, Z.-W. Chen, J.
Sun, K. Liu, W. Chen, W. Shi, H.-M. Wang, and Y. Liu, J.
Org. Chem., 67, 7624 (2002).
The kinetics of decay of the superoxide adducts were mea-
sured in phosphate buffer (pH 7.4). The superoxide was gener-
ated with a xanthine/xanthine oxidase system and was stopped
by adding SOD. The spin adduct decay was followed by mon-
itoring the decrease of an appropriate line of the spin adduct.
The ESR signals of 3a-OOH and 3b-OOH were observed for
40 min and 6 min, respectively. The decay of 3a-OOH produced
under these conditions was pure first-order and had a rate con-
stant of 1:1 ꢅ 10ꢁ3 sꢁ1, which corresponds to a half-life of
633 s. These half-life times are longer than that of DMPO
(t1=2 ¼ 50 s, at pH 7.0) and the same as that of DEPMPO
(t1=2 ¼ 780 s, at pH 7.0) under similar conditions.10
´
8
9
C. Frejaville, H. Karoui, B. Tuccio, F. L. Moigne, M.
Culcasi, S. Pietri, R. Lauricella, and P. Tordo, J. Med.
Chem., 38, 258 (1995).
Satisfactory elemental analyses were obtained for all new
compounds. 2-(methylphenylphosphoryl)-2-methyl-3,4-di-
hydro-2H-pyrroline N-oxide (3a); 1H NMR (CDCl3,
400 MHz) d ¼ 1:38{1:46 (m, 1H) 1.90 (d, J ¼ 12 Hz, 3H)
2.085 (d, J ¼ 18:4 Hz, 3H), 1.99–2.09 (m, 1H), 2.24-2.32
(m, 1H), 2.79–2.89 (m, 1H), 6.57 (dt, J ¼ 1:2 Hz, 2.4 Hz,
1H), 7.27–7.912 (m, 5H). 2-(ethoxyphenylphosphoryl)-2-
methyl-3,4-dihydro-2H-pyrroline N-oxide (3b); 1H NMR
(CDCl3, 400 MHz) d ¼ 1:27 (t, J ¼ 7:2 Hz, 3H), 1.31 (t,
J ¼ 7:2 Hz, 3H) 1.49 (d, J ¼ 15:2 Hz, 3H), 1.70 (d,
J ¼ 15:2 Hz, 3H), 1.85–2.10 (m, 2H), 2.05-2.55 (m, 1H),
2.80–3.13 (m, 1H) 3.92–4.18 (m, 2H) 6.61 (db,
J ¼ 2:4 Hz, 0.5H), 6.86 (db, J ¼ 3:2 Hz, 0.5H), 7.43–
7.908 (m, 5H).
To estimate the relative lipophilicity of the pyrroline N-ox-
ide 3, we determined the partition coefficient of 3 between 1-oc-
tanol and the water system (Table 2). The presence of a phenyl
group at the phosphorus enhanced the lipophilicity of 3. It was
Table 2. Partition of pyrroline N-oxide 3 between 1-octanol
and watera
´
10 B. Tuccio, R. Lauricella, C. Frejaville, J. C. Bouteiller, and
P. Tordo, J. Chem. Soc., Perkin Trans. 2, 1995, 295.
11 E. G. Janzen, J. L. Poyer, C. F. Schaefer, P. E. Downs, and
C. M. Dubose, J. Biochem. Biophys. Methods, 30, 239
(1995).
3a
3b
DEPMPO
0.06c
DMPO
0.11 (0.10d)
Pb
0.70
0.44
aConditions: 1-octanol 5 ml, H2O 5 ml, 0.15 mmol, at 36 ꢂC.
bP = [3 in 1-octanol]/[3 in H2O]. Ref. 8. Ref. 11.
c
d
Published on the web (Advance View) June 17, 2003;DOI 10.1246/cl.2003.604