First author et al.
Report
Organic Electrochemical Methods Since 2000: On the Verge of a Renais-
prochiral ketones in the presence of (−)-N,N′-dimethylquininium tetra-
fluoroborate at mercury cathode. Tetrahedron: Asymmetry 2003, 14,
1079-1081; (e) Heimann, J.; Schäfer, H. J.; Fröhlich, R.; Wibbeling, B. Ca-
thodic Cyclisation of N-(Oxoalkyl)pyridinium Salts − Formation of Tricy-
clic Indolizidine and Quinolizidine Derivatives in Aqueous Medium. Eur.
J. Org. Chem. 2003, 2003, 2919-2932; (f) Kise, N.; Agui, S.; Morimoto, S.;
Ueda, N. Electroreductive Acylation of Aromatic Ketones with Acylimid-
azoles. J. Org. Chem. 2005, 70, 9407-9410; (g) Kise, N.; Isemoto, S.; Sa-
kurai, T. Electroreductive Intramolecular Coupling of Phthalimides with
Aromatic Aldehydes: Application to the Synthesis of Lennoxamine. J.
Org. Chem. 2011, 76, 9856-9860; (h) Parrish, J. D.; Little, R. D. Electro-
chemical generation of low-valent lanthanides. Tetrahedron Lett. 2001,
cathode. Synlett. 2000, 1199-1201; (j) Yadav, A. K.; Manju, M.; Kumar,
M.; Yadav, T.; Jain, R. A new diastereoselective intramolecular electro-
reductive coupling of unsaturated β-ketoesters and β-ketoamides in
ionic liquids at a tin cathode. Tetrahedron Lett. 2008, 49, 5724-5726; (k)
Miyazaki, T.; Maekawa, H.; Hisatomi, T.; Nishiguchi, I. Highly Stereo- and
Regio-Selective Intramolecular Cyclization with Diastereoselective
Asymmetric Induction by Electroreduction of Optically Active N-Alkenyl-
2-Acylpyrrolidines. Electrochemistry 2011, 79, 447-449; (l) Sahloul, K.;
Sun, L.; Requet, A.; Chahine, Y.; Mellah, M. A Samarium “Soluble” An-
ode: A New Source of SmI2 Reagent for Electrosynthetic Application.
Chem. Eur. J. 2012, 18, 11205-11209.
sance. Chem. Rev. 2017, 117, 13230-13319; (g) Jiang, Y.; Xu, K.; Zeng, C.
Use of Electrochemistry in the Synthesis of Heterocyclic Structures.
Chem. Rev. 2018, 118, 4485-4540; (h) Moeller, K. D. Using Physical Or-
ganic Chemistry to Shape the Course of Electrochemical Reactions.
Chem. Rev. 2018, 118, 4817-4833; (i) Wiebe, A.; Gieshoff, T.; Mçhle, S.;
Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Electrifying Organic Synthesis.
Angew. Chem. Int. Ed. 2018, 57, 5594-5619; (j) Yoshida, J.-i.; Shimizu, A.;
Hayashi, R. Electrogenerated Cationic Reactive Intermediates: The Pool
Method and Further Advances. Chem. Rev. 2018, 118, 4702-4730; (k)
Kingston, C.; Palkowitz, M. D.; Takahira, Y.; Vantourout, J. C.; Peters, B.
K.; Kawamata, Y.; Baran, P. S. A Survival Guide for the “Electro-curious”.
Acc. Chem. Res. 2020, 53, 72-83.
[6] For selected examples of electrochemical activation of substrates, see:
(a) Morofuji, T.; Shimizu, A.; Yoshida, J.-i. Heterocyclization Approach
for Electrooxidative Coupling of Functional Primary Alkylamines with Ar-
omatics. J. Am. Chem. Soc. 2015, 137, 9816-9819; (b) Fu, N.; Sauer, G.
S.; Saha, A.; Loo, A.; Lin, S. Metal-catalyzed electrochemical diazidation
of alkenes. Science 2017, 357, 575-579; (c) Hou, Z.-W.; Mao, Z.-Y.; Song,
J.; Xu, H.-C. Electrochemical Synthesis of Polycyclic N-Heteroaromatics
through Cascade Radical Cyclization of Diynes. ACS Catal. 2017, 7, 5810-
5813; (d) Sauermann, N.; Mei, R.; Ackermann, L. Electrochemical C−H
Amination by Cobalt Catalysis in a Renewable Solvent. Angew. Chem.
Int. Ed. 2018, 57, 5090-5094; (e) Tang, S.; Wang, S.; Liu, Y.; Cong, H.; Lei,
A. Electrochemical Oxidative C−H Amination of Phenols: Access to Tri-
arylamine Derivatives. Angew. Chem. Int. Ed. 2018, 57, 4737-4741; (f)
Qiu, Y.; Tian, C.; Massignan, L.; Rogge, T.; Ackermann, L. Electrooxidative
Ruthenium-Catalyzed C−H/O−H Annulation by Weak O-Coordination.
Angew. Chem. Int. Ed. 2018, 57, 5818-5822; (g) Xiang, J.; Shang, M.; Ka-
wamata, Y.; Lundberg, H.; Reisberg, S. H.; Chen, M.; Mykhailiuk, P.;
Beutner, G.; Collins, M. R.; Davies, A.; Del Bel, M.; Gallego, G. M.; Span-
gler, J. E.; Starr, J.; Yang, S.; Blackmond, D. G.; Baran, P. S. Hindered di-
alkyl ether synthesis with electrogenerated carbocations. Nature, 2019,
573, 398-402; (h) Siu, J. C.; Parry, J. B.; Lin, S. Aminoxyl-Catalyzed Elec-
trochemical Diazidation of Alkenes Mediated by a Metastable Charge-
Transfer Complex. J. Am. Chem. Soc. 2019, 141, 2825-2831; (i) Niu, L.;
Jiang, C.; Liang, Y.; Liu, D.; Bu, F.; Shi, R.; Chen, H.; Chowdhury, A. D.; Lei,
A. Manganese-Catalyzed Oxidative Azidation of C(sp3)–H Bonds under
Electrophotocatalytic Conditions. J. Am. Chem. Soc. 2020, 142, 17693-
17702. (j) Wang, Q.; Zhang, X.; Wang, P.; Gao, X.; Zhang, H.; Lei, A. Elec-
trochemical Palladium-Catalyzed Intramolecular C-H Amination of 2-
Amidobiaryls for Synthesis of Carbazoles. Chin. J. Chem. 2021, 39, 143-
148; (k) Lu, L.; Li, H.; Zheng, Y.; Bu, F.; Lei, A. Facile and Economical Elec-
trochemical Dehalogenative Deuteration of (Hetero)Aryl Halides. CCS
Chem. 2020, 2, 2669–2675.
[9] For selected examples of electrochemistry-promoted reduction of am-
chim. Acta 2008, 53, 7107-7110; (c) Sakurai, B. THE ELECTROLYTIC RE-
DUCTION OF PHTHALIMIDES. PART I. Bull. Chem. Soc. Jpn. 1930, 5, 184-
189; (d) Allen, M. J.; Ocampo, J. Cathodic Reduction of 3,4,5,6-Tetra-
chloro-N-(2-Dimethyl-aminoethyl)-Phthalimide. J. Electrochem. Soc.
1956, 103, 452-455; (e) Leedy, D. W.; Muck, D. L. Cathodic reduction of
phthalimide systems in nonaqueous solutions. J. Am. Chem. Soc. 1971,
93, 4264-4270; (f) Porter, J. D.; Fletcher, S.; Barradas, R. G. Epoxide Di-
mers Formed Electrochemically from Phthalimide in Alkaline Solution:
A Kinetic and Structural Analysis. J. Electrochem. Soc. 1979, 126, 1693-
1699; (g) Villagrán, C.; Banks, C. E.; Pitner, W. R.; Hardacre, C.; Compton,
R. G. Electroreduction of N-methylphthalimide in room temperature
ionic liquids under insonated and silent conditions. Ultrason. Sonochem.
2005, 12, 423-428; (h) Fechete, I.; Jouikov, V. Double decarbonylation
of phthalimide revisited: A facile cathodic synthesis of isoindoline. Elec-
trochim. Acta 2008, 53, 7107-7110; (i) Kise, N.; Sakurai, T. Electroreduc-
tive intramolecular coupling of N-(oxoalkyl)phthalimides: complemen-
tary method to samarium(II) iodide reduction. Tetrahedron Lett. 2010,
51, 70-74; (j) Bai, Y.; Shi, L.; Zheng, L.; Ning, S.; Che, X.; Zhang, Z.; Xiang,
J. Electroselective and Controlled Reduction of Cyclic Imides to Hydrox-
ylactams and Lactams. Org. Lett. 2021, 23, 2298-2302.
[10] Li, J.; He, L.; Liu, X.; Cheng, X.; Li, G. Electrochemical Hydrogenation with
Gaseous Ammonia. Angew. Chem. Int. Ed. 2019, 58, 1759-1763.
[11] For details regarding the screening of conditions for reduction of di
phenyl methanone, as well as conditions for a gram-scale reduction,
see the Supporting Information.
[12] (a) Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi, I. J.; Maryanoff,
C. A. Cyclizations of N-Acyliminium Ions. Chem. Rev. 2004, 104, 1431-
1628; (b) Johnson, W. S. Biomimetic Polyene Cyclizations. Angew.
Chem. Int. Ed. 1976, 15, 9-17; (c) Hamon, M.; Dickinson, N.; Devineau,
A.; Bolien, D.; Tranchant, M.-J.; Taillier, C.; Jabin, I.; Harrowven, D. C.;
Whitby, R. J.; Ganesan, A.; Dalla, V. Intra- and Intermolecular Alkyla-
tion of N,O-Acetals and π-Activated Alcohols Catalyzed by in Situ Gen-
erated Acid. J. Org. Chem. 2014, 79, 1900-1912; (d) Huang, H.; Ji, X.;
Wu, W.; Jiang, H. A cascade approach to fused indolizinones through
Lewis acid–copper relay catalysis. Chem. Commun. 2013, 49, 3351-
3353; (e) King, F. D. A facile three-step synthesis of (±)-crispine A via
an acyliminium ion cyclisation. Tetrahedron 2007, 63, 2053-2056; (f)
[7] For selected reviews on electrochemistry-promoted reductive organic
reactions, see: (a) Conont, J. B. The Electrochemical Formulation of the
Irreversible Reduction and Oxidation of Organic Compounds. Chem. Rev.
1926, 3, 1-40; (b) Müller, O. H. Oxidation and Reduction of Organic Com-
pounds at the Dropping Mercury Electrode and the Application of Hey-
rovský's Polarographic Method in Organic Chemistry. Chem. Rev. 1939,
24, 95-124; (c) Popp, F. D.; Schultz, H. P. Electrolytic Reduction of Organic
Compounds. Chem. Rev. 1962, 62, 19-40; (d) Eberson, L.; Schäfer, H. Or-
ganic Electrochemistry. In Organic Electrochemistry; Fortschritte der
Chemischen Forschung; Springer, Berlin, Heidelberg: Berlin/Heidelberg,
1971, 21, 1-182.
[8] For selected examples of electrochemistry-promoted reduction of alde-
hydes and ketones, see: (a) Kronenwetter, H.; Husek, J.; Etz, B.; Jones,
A.; Manchanayakage, R. Electrochemical pinacol coupling of aromatic
carbonyl compounds in a [BMIM][BF4]–H2O mixture. Green Chem. 2014,
16, 1489-1495; (b) Parrish, J. D.; Little, R. D. Electrochemical generation
of low-valent lanthanides. Tetrahedron Lett. 2001, 42, 7767-7770; (c)
Sun, L.; Mellah, M. Efficient Electrosynthesis of SmCl2, SmBr2, and
Sm(OTf)2 from a “Sacrificial” Samarium Anode: Effect of nBu4NPF6 on
the Reactivity. Organometallics 2014, 33, 4625-4628; (d) Yadav, A. K.;
Manju, M.; Chhinpa, P. R. Enantioselective cathodic reduction of some
© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH
Chin. J. Chem. 2021, 39, XXX-XXX