5
Soc. 1999, 121, 4369–4372. (c) Shelby, Q.; Kataoka, N.; Mann, G.;
Hartwig, J. J. Am. Chem. Soc. 2000, 122, 10718–10721. (d) Mann, G.;
References and notes
1.
For selected reviews dealing with diaryl ethers of biological relevance,
see: (a) Nicolaou, K. C.; Boddy, C. N. C.; Brase, S.; Winssinger, N.
−2152; (b) Corbett, J. W.;
Rauckhorst, M. R.; Qian, F.; Hoffman, R. L.; Knauer, C. S.; Fitzgerald,
L. W. Bioorg. Med. Chem. Lett. 2007, 17, 6250−6256. (c) Pitsinos, E.
N.; Vidali, V. P.; Couladouros, E. A. Eur. J. Org. Chem. 2011, 2011,
1207−1222. (d) Bedos-Belval, F.; Rouch, A.; Vanucci-Bacque, C.;
Shelby, Q.; Roy, A. H.; Hartwig, J. F. Organometallics 2003, 22, 2775–
2781. (e) Harkal, S.; Kumar, K.; Michalik, D.; Zapf, A.; Jackstell, R.;
Rataboul, F.; Riermeier, T.; Monsees, A.; Beller, M. Tetrahedron Lett.
2005, 46, 3237–3240. (f) Burgos, C. H.; Barder, T. E.; Huang, X.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 4321–4326. (g) Hu,
T.; Schulz, T.; Torborg, C.; Chen, X.; Wang, J.; Beller, M.; Huang, J.
Chem. Commun. 2009, 7330–7333. (h Platon, M.; Cui, L.; Mom, S.;
Richard, P.; Saeys, M.; Hierso, J.-C. Adv. Synth. Catal. 2011, 353,
3403–3406. (i) Salvi, L.; Davis, N. R.; Ali, S. Z.; Buchwald, S. L. Org.
Lett. 2012, 14, 170–173.
̈
Angew. Chem., Int. Ed. 1999, 38, 2096
Baltas, M. ́ Med. Chem. Comm. 2012, 3, 1356−1372.
2.
3.
Moellering, R. C. Clin. Infect. Dis. 2006, 42, S3–S4.
Brogden, R. N.; Finder, R. M.; Speight, T. M.; Avery, G. S. Drugs
2012, 13, 241–265.
17. (a) Jammi, S.; Sakthivel, S.; Rout, L.; Mukherjee, T.; Mandal, S.; Mitra,
R.; Saha, P.; Punniyamurthy, T. J. Org. Chem. 2009, 74, 1971–1976;
(b) Xu, H. J.; Liang, Y. F.; Cai, Z. Y.; Qi, H. X.; Yang, C. Y.; Feng, Y.
S. J. Org. Chem. 2011, 76, 2296–2300.
4.
5.
Wilhelm, S. M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J. M.;
Lynch, M. Mol. Cancer Ther. 2008, 7, 3129–3140.
Gao, H.; Huang, K-C.; Yamasaki, E. F.; Chan, K. K.; Chohan, L.;
Snapka, R. M. Proc. Natl. Acad. Sci. USA, 1999, 96, 12168–12173.
Peters. W. J. R. Soc. Med. 1999, 92, 345–352.
18. (a) Ren, Y. L.; Cheng, L.; Tian, X. Z.; Zhao, S.; Wang, J. J.; Hou, C. D.
Tetrahedron Lett. 2010, 51, 43–45; (b) Tian, G.; Yuan, H. M.; Mu, Y.;
He, C.; Feng, S. H. Org. Lett. 2007, 9, 2019–2021; (c) Bistri, O.;
Correa, A.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 586–588.
19. Sergeev, A. G.; Webb, J. D.; Hartwig, J. F. J. Am. Chem. Soc. 2012,
134, 20226–20229.
6.
7.
Kormos, C. M.; Jin, C.; Cueva, J. P.; Runyon, S. P.; Thomas, J. B.;
Brieaddy, L. E.; Mascarella, S. W.; Navarro, H. A.; Gilmour, B. P.;
Carroll, F. I. J. Med. Chem. 2013, 56, 4551–4567.
8.
9.
Laskoski, M.; Dominguez, D. D.; Keller, T. M. J. Polym. Sci. Part
Polym. Chem. 2006, 44, 4559–4565.
20. (a) Ohkubo, K.; Kobayashi, T.; Fukuzumi, S. Angew. Chem., Int. Ed.
2011, 50, 8652–8655; (b) Lee, B.; Naito, H.; Nagao, M.; Hibino, T.
Angew. Chem., Int. Ed. 2012, 51, 6961–6965.
Ullmann, F.; Sponagel, P. Ber. Dtsch. Chem. Ges. 1905, 38, 2211–
2212. (b) Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691–1692.
10. For reviews on Ullman type couplings, see: (a) Sambiago, C.; Marsden,
S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525–
3550; (b) Monnier, F.; Taillefer, M. Angew. Chem. Int. Ed. Engl. 2009,
48, 6954-6971; (c) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev.
2008, 108, 3054–3131; (d) D. Ma, Q. Cai, Acc. Chem. Res. 2008, 41,
1450– 1460. (e) Crouch, R. D. In Organic Reactions; Overman, L. E.,
Ed.; John and Wiley: New York, 2004; pp 265–555; (f) Metal-
Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A.,
Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; (g) Beletskaya, I. P.;
Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337–2364; (h) Kunz,
K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428–2439; (i) Ley, S. V.;
Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400–5449; (k)
Hassan, J.; Svignon, M.; Gozzi C.; Schulz, E.; Lemaire, M. Chem Rev.
2002, 102, 1359–1469.
21. (a) Sugata, H.; Tsubogo, T.; Kino, Y.; Uchiro, H. Tetrahedron Lett.,
2017, 58, 1015–1019; (b) Marcoux, J. F.; Doye, S.; Buchwald, S. L. J.
Am. Chem. Soc. 1997, 119, 10539–10540; (c) Fagan, P. J.; Hauptman,
E.; Shapiro, R.; Casalnuovo, A. J. Am. Chem. Soc. 2000, 122, 5043–
5051; (d) Lv, X.; Bao, W. J. Org. Chem. 2007, 72, 3863–3867; (e)
Wolter, M. Nordman, G.; Job, G. E. Buchwald, S. L. Org. Lett. 2002, 4,
973, 976; (f) Song, G.; Zhang, Z.; Da, Y.; Wang, X. Tetrahedron, 2015,
71, 8823–8829; (g) Cheng, A.-Y.; Hsieh, J.-C. Tetrahedron Lett., 2012,
53, 71-75; (h) Navarro, L.; Pujol, M. D. Tetrahedron Lett., 2015, 56,
1812-1815; (i) Jogdand, N. R.; Shingate, B. B.; Shingare, M. S.
Tetrahedron Lett., 2009, 50, 4019-4021.
22. (a) Yang, K.; Qiu, Y.; Li, Z.; Wang, Z.; Jiang, S. J. Org. Chem., 2011,
76, 3151–3159; (b) Wu, F.-T.; Yan, N.-N.; Liu, P.; Xie, J.-W.; Liu, Y.;
Dai, B. Tetrahedron Lett., 2014, 55, 3249–3251; (c) Liang, L.; Li, Z.;
Zhou, X. Org. Lett., 2009, 11, 3294–3297.
11. Altman, R. A.; Shafir, A.; Choi, A.; Lichtor, P. A.; Buchwald, S. L. J.
Org. Chem. 2008, 73, 284–286.
23. (a) Rouquet, G.; Chatani, N. Angew. Chem. Int. Ed. 2013, 52, 11726 –
11743. (b) Nadres, E. T.; Santos, G. I. F.; Shabashov, D.; Daugulis, O. J.
Org. Chem. 2013, 78, 9689–9714. (c) Nadres, E. T.; Daugulis, O. J. Am.
Chem. Soc. 2012, 134, 7–10.
12. Cai, Q.; Zou, D.; Ma, D. Angew. Chem. Int. Ed. Engl. 2006, 45, 1276–
1279.
13. Zhang, S.; Zhang, D.; Liebeskind, L. S. J. Org. Chem. 1997, 62, 2312–
2313.
24. Hayashi, M.; Iwanaga, M.; Shiomi, N.; Nakane, D.; Masuda, H.;
Nakamura, S. Angew. Chem. Int. Ed. 2014, 53, 8411– 8415.
25. Damkaci, F.; Altay, E.; Waldron, M.; Knopp, M. A.; Snow, D.; Massaro,
N. Tetrahedron Lett. 2014, 55, 690–693.
26. Damkaci, F.; Alawaed, A.; Vik, E. Tetrahedron Lett. 2016, 55, 2197–
2200.
14. For selected copper catalyzed diaryl ether synthesis, see: (a) Buck, E.;
Song, Z. J.; Tschaen, D.; Dormer, P. G.; Volante, R. P.; Reider, P. J.
Org. Lett. 2002, 4, 1623–1626. (b) Ma, D.; Cai, Q. Org. Lett. 2003, 5,
3799–3802. (c) Cristau, H.-J.; Cellier, P. P.; Hamada, S.; Spindler, J.-F.;
Taillefer, M. Org. Lett. 2004, 6, 913–916. (d) Cai, Q.; Zou, B.; Ma, D.
Angew. Chem., Int. Ed. 2006, 45, 1276–1279. (e) Rao, H.; Jin, Y.; Fu,
H.; Jiang, Y.; Zhao, Y. Chem. - Eur. J. 2006, 12, 3636–3646. (f) Lv, X.;
Bao, W. J. Org. Chem. 2007, 72, 3863–3867. (g) Altman, R. A.; Shafir,
A.; Choi, A.; Lichtor, P. A.; Buchwald, S. L. J. Org. Chem. 2008, 73,
284–286. (h) Xia, N.; Taillefer, M. Chem. - Eur. J. 2008, 14, 6037–
6039. (i) Zhang, Q.; Wang, D.; Wang, X.; Ding, K. J. Org. Chem. 2009,
74, 7187–7190. (j) Liu, Y.; Li, G.; Yang, L. Tetrahedron Lett. 2009, 50,
343–346. (k) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009,
48, 6954–6971. (l) Maiti, D.; Buchwald, S. L. J. Org. Chem. 2010, 75,
1791–1794. (m) Fan, M.; Zhou, W.; Jiang, Y.; Ma, D. Angew. Chem.,
Int. Ed. 2016, 55, 6211–6215.
27. General coupling procedure for diaryl ether synthesis: To a 50mL
multi-necked round bottom flask, 1 mmol of aryl halide, 1.2 mmol of
phenol, 20 mol% ligand, 20 mol% copper powder, 2.0 mmol of base,
and 20 mL of acetonitrile were added. The mixture was stirred at 82 °C
for 24h. The reaction mixture was diluted with ethyl acetate and filtered
through Celite in a fritted filter funnel to remove any inorganic salts.
The solvent was then removed with the help of a rotary evaporator. The
residue was purified by flash chromatography using hexane and ethyl
acetate as an eluent to yield the product.
28. Kawasuji, T.; Yoshinaga, T.; Sato, A.; Yodo, M.; Fujiwara, T.; Kiyama,
R. Bioorg. Med. Chem. 2006, 14, 8430–8445.
15. For selected examples of copper catalyzed phenol synthesis, see: (a)
Wang, D. P.; Kuang, D. Z.; Zhang, F. X.; Tang, S. P.; Jiang, W. J. Eur.
J. Org. Chem. 2014, 315–318; (b) Priyadarshini, S.; Amal Joseph, P. J.;
Lakshmi Kantam M.; Sreedhar, B. Tetrahedron, 2013, 69, 6409–6414
(c) Jia, J.; Jiang, C.; Zhang, X.; Jiang, Y.; Ma, D. Tetrahedron Lett.
2011, 52, 5593–5595; (d) Xu, H. J.; Liang, Y.-F.; Cai, Z.-Y.; Qi, H.-X.;
Yang, C.- Y.; Feng, Y.-S. J. Org. Chem. 2011, 76, 2296–2300; (e)
Thakur, K. G.; Sekar, G. Chem. Commun. 2011, 6692–6694; (f) Yang,
K.; Li, Z.; Wang, Z.; Yao, Z.; Jiang, S. Org. Lett. 2011, 13, 4340–4343;
(g) Alonso, D. A.; Najera, C.; Pastor, I. M.; Yus, M. Chem. Eur. J.
2010, 16, 5274–5284; (h) Jing, L. H.; Wei, J. T.; Zhou, L.; Huang, Z.
Y.; Li, Z. K.; Zhou, X. G. Chem. Commun. 2010, 4767–4769; (i) Tlili,
A.; Xia, N.; Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48,
8725–8728.
29. Kaldor, S. W.; Kalish, V. J.; Davies, J. F.; Shetty, B. V.; Fritz, J. E.;
Appelt, K.; Burgess, J. A.; Campanale, K. M.; Chirgadze, N. Y.;
Clawson, D. K.; Dressman, B. A.; Hatch, S. D.; Khalil, D. A.; Kosa, M.
B.; Lubbehusen, P. P.; Muesing, M. A.; Patick, A. K.; Reich, S. H.; Su,
K. S.; Tatlock, J. H. J. Med. Chem. 1997, 40, 3979–3985.
30. General coupling procedure for the synthesis of phenols: To a 10 mL
pressure vessel, aryl halide (1.00 mmol), copper (I) oxide (0.05 mol),
ligand (0.05 mol), 3M sodium hydroxide (2 mL), and organic solvent (2
mL) were added. The reaction mixture was irradiated at 160°C for 10
min with strong stirring. The reaction mixture was allowed to cool to
room temperature. The reaction mixture was filtered through a plug of
celite in a fritted filter funnel and washed with ethyl acetate. The
product was extracted using 30 mL of ethyl acetate for three times. The
organic extract is washed three times with 10 mL water and two times
with 10 mL of brine. The combined organic phase was dried over
anhydrous MgSO4 and the solvent was removed under reduced pressure
to provide the product.
16. For selected examples of palladium catalyzed diaryl ether synthesis,
see: (a) Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F. J. Am.
Chem. Soc. 1999, 121, 3224–3226. (b) Aranyos, A.; Old, D. W.;
Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem.