9 X. Cui, X. Xu, H. Lu, S. Zhu, L. Wojtas and X. P. Zhang, Enantioselec-
tive cyclopropenation of alkynes with acceptor–acceptor-substituted diazo
reagents via Co(II)-based metalloradical catalysis, J. Am. Chem. Soc.,
2011, 133(10), 3304–3307; M. Uehara, H. Suematsu, Y. Yasutomi and
T. Katsuki, Enantioenriched synthesis of cyclopropenes with a quaternary
stereocenter, versatile building blocks, J. Am. Chem. Soc., 2011, 133(2),
170–171.
10 M. L. Davies Huw and H. Lee Gene, Dirhodium(II) tetra(N-(dodecylben-
zenesulfonyl)prolinate) catalyzed enantioselective cyclopropenation of
alkynes, Org. Lett., 2004, 6(8), 1233–1236.
11 M. P. Doyle, M. Protopopova, P. Muller, D. Ene and E. A. Shapiro, Effec-
tive uses of dirhodium(II) tetrakis[methyl 2-oxopyrrolidine-5(R or S)-car-
boxylate] for highly enantioselective intermolecular cyclopropenation
reactions, J. Am. Chem. Soc., 1994, 116(19), 8492–8498; M. P. Doyle,
D. G. Ene, C. S. Peterson and V. Lynch, Macrocyclic cyclopropenes by
highly enantioselective intramolecular addition of metal carbenes to
alkynes, Angew. Chem., Int. Ed., 1999, 38(5), 700–702; M. P. Doyle,
T. M. Weathers, Jr. and Y. Wang, Stereoselectivity in metal carbene
addition to a carbon–carbon triple bond tied to the reactant diazoacetate
through a chiral linker, Adv. Synth. Catal., 2006, 348(16–17), 2403–2409;
M. N. Protopopova, M. P. Doyle, P. Mueller and D. Ene, High enantios-
electivity for intermolecular cyclopropenation of alkynes by diazo esters
catalyzed by chiral dirhodium(II) carboxamides, J. Am. Chem. Soc., 1992,
114(7), 2755–2757.
cyclopropenation of 1-TMS-2-phenylethyne and 1b is ineffective
due to the formation of insoluble silver acetylide salts.8
In conclusion, we have demonstrated the first examples of
Cu(I)-catalyzed [3 + 2] cycloaddition reactions of internal
alkynes and acceptor–acceptor diazoacetates to afford highly
chemo- and regioselective tetra-substituted furan products. It was
also discovered that copper(I) iodide is an efficient catalyst for
the cyclopropenation of internal alkynes and donor–acceptor
diazoacetates. Although the overall conversion of the internal
alkynes to the corresponding cycloadduct products was relatively
modest (29–73%), it is thought that the simple recovery of
internal alkyne starting material, reduced reaction times, and
ease of purification suggests that this approach is promising.
Aims to increase the overall yields and expand the scope of elec-
tron-rich internal alkyne substrates are currently underway.
Acknowledgements
We would like to thank the Rochester Institute of Technology
Office of the Vice President of Research, College of Science,
and School of Chemistry and Materials Sciences for their gener-
ous financial support.
12 B. A. Keay, Synthesis of multi-substituted furan rings: the role of silicon,
Chem. Soc. Rev., 1999, 28(4), 209–215.
13 S. F. Kirsch, Syntheses of polysubstituted furans: recent developments,
Org. Biomol. Chem., 2006, 4(11), 2076–2080; H. N. C. Wong,
X.-L. Hou, K.-S. Yeung and H. Huang, Five-membered heterocycles:
furan, Mod. Heterocycl. Chem., 2011, 1, 533–592; J. Salaun and
M. S. Baird, Biologically active cyclopropanes and cyclopropenes, Curr.
Med. Chem., 1995, 2(1), 511–542; J. W. Huffman and L. W. Padgett,
Recent developments in the medicinal chemistry of cannabimimetic
indoles, pyrroles and indenes, Curr. Med. Chem., 2005, 12(12), 1395–
1411; E. G. Mamedov and E. I. Klabunovskii, Asymmetric Diels–Alder
reactions of cyclopentadiene in the synthesis of chiral norbornene deriva-
tives, Russ. J. Org. Chem., 2008, 44(8), 1097–1120.
14 M. P. Doyle, M. A. McKervey and T. Ye, Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds: From Cyclopropanes to
Ylides, 1998, p. 652.
15 H. M. L. Davies and R. E. J. Beckwith, Catalytic enantioselective C–H
activation by means of metal–carbenoid-induced C–H insertion, Chem.
Rev., 2003, 103(8), 2861–2904; M. P. Doyle, R. Duffy, M. Ratnikov and
L. Zhou, Catalytic carbene insertion into C–H bonds, Chem. Rev., 2009,
110(2), 704–724.
16 F. Gonzalez-Bobes, M. D. B. Fenster, S. Kiau, L. Kolla, S. Kolotuchin
and M. Soumeillant, Rhodium-catalyzed cyclopropanation of alkenes
with dimethyl diazomalonate, Adv. Synth. Catal., 2008, 350(6), 813–816.
17 J. F. Briones and H. M. L. Davies, Rh2(S-PTAD)4-catalyzed asymmetric
cyclopropenation of aryl alkynes, Tetrahedron, 2011, 67(24), 4313–4317.
18 J. L. Thompson and H. M. L. Davies, Enhancement of cyclopropanation
chemistry in the silver-catalyzed reactions of aryldiazoacetates, J. Am.
Chem. Soc., 2007, 129(19), 6090–6091.
19 J. F. Briones and H. M. L. Davies, Gold(I)-catalyzed asymmetric cyclo-
propenation of internal alkynes, J. Am. Chem. Soc., 2012, 134(29),
11916–11919.
20 H. M. L. Davies, M. G. Coleman and D. L. Ventura, Balance between
Allylic C–H activation and cyclopropanation in the reactions of donor–
acceptor-substituted rhodium carbenoids with trans-alkenes, Org. Lett.,
2007, 9, 4971–4974; D. L. Ventura, Z. Li, M. G. Coleman and
H. M. L. Davies, Intermolecular C–H functionalization versus cyclopro-
panation of electron rich 1,1-disubstituted and trisubstituted alkenes,
Tetrahedron, 2009, 65, 3052–3061.
References
1 H. M. L. Davies and K. R. Romines, Direct synthesis of furans by 3 + 2
cycloadditions between rhodium(II) acetate stabilized carbenoids and
acetylenes, Tetrahedron, 1988, 44(11), 3343–3348.
2 W. Pang, S. Zhu, Y. Xin, H. Jiang and S. Zhu, Rh2(OAc)4 catalyzed for-
mation of fluorine-containing polysubstituted furans from diazo com-
pounds and aromatic alkynes, Tetrahedron, 2010, 66(6), 1261–1266;
L. Zhou, J.-C. Ma, Y. Zhang and J.-B. Wang, Copper-catalyzed cascade
coupling/cyclization of terminal alkynes with diazoacetates: a straight-
forward route for trisubstituted furans, Tetrahedron Lett., 2011, 52(42),
5484–5487.
3 Y. Lou, T. P. Remarchuk and E. J. Corey, Catalysis of enantioselective
[2 + 1]-cycloaddition reactions of ethyl diazoacetate and terminal acetyl-
enes using mixed-ligand complexes of the series Rh2(RCO2)n (L*4−n).
Stereochemical heuristics for ligand exchange and catalyst synthesis,
J. Am. Chem. Soc., 2005, 127(41), 14223–14230.
4 E. J. Park, S. H. Kim and S. Chang, Copper-catalyzed reaction of α-aryl-
diazoesters with terminal alkynes: a formal [3 + 2] cycloaddition route
leading to indene derivatives, J. Am. Chem. Soc., 2008, 130(51), 17268–
17269.
5 P. Panne and J. M. Fox, Rh-catalyzed intermolecular reactions of alkynes
with α-diazoesters that possess β-hydrogens: ligand-based control over
divergent pathways, J. Am. Chem. Soc., 2007, 129(1), 22–23.
6 J. F. Briones, J. Hansen, K. I. Hardcastle, J. Autschbach and
H. M. L. Davies, Highly enantioselective Rh2(S-DOSP)4-catalyzed cyclo-
propenation of alkynes with styryldiazoacetates, J. Am. Chem. Soc.,
2010, 132(48), 17211–17215.
7 P. Mueller, N. Pautex, M. P. Doyle and V. Bagheri, Rhodium(II)-catalyzed
isomerizations of cyclopropenes. Evidence for rhodium(II)-complexed
vinylcarbene intermediates, Helv. Chim. Acta, 1990, 73(5), 1233–1241.
8 J. F. Briones and H. M. L. Davies, Silver triflate-catalyzed cyclopropena-
tion of internal alkynes with donor-/acceptor-substituted diazo com-
pounds, Org. Lett., 2011, 13, 3984–3987.
21 M. Rubin, M. Rubina and V. Gevorgyan, Transition metal chemistry of
cyclopropenes and cyclopropanes, Chem. Rev., 2007, 107(7), 3117–3179.
7486 | Org. Biomol. Chem., 2012, 10, 7483–7486
This journal is © The Royal Society of Chemistry 2012