J. Hartung, M. Greb / Tetrahedron Letters 44 (2003) 6091–6093
6093
epi-1.§,14 The sample of aplysiapyranoid A (1) was
contaminated with a minor amount of its dechlorinated
derivative (4%) and 10% of starting aldehyde, which
could be separated from 1 by column chromatography.
The final step from the synthesis of epi-1 was not
associated with similar complications.
Klu¨h, undergraduate research participant, for technical
assistance.
References
1. Kusumi, T.; Uchida, H.; Inouye, Y.; Ishitsuka, M.;
Yamamoto, H.; Kakisawa, H. J. Org. Chem. 1987, 52,
4597–4600.
2. Inoue, Y.; Uchida, H.; Kusumi, T.; Kakisawa, H. J.
Chem. Soc., Chem. Commun. 1987, 346–347.
3. Jung, M. E.; D’Amico, D. C.; Lew, W. Tetrahedron Lett.
1993, 34, 923–926.
4. Jung, M. E.; Fahr, B. T.; D’Amico, D. C. J. Org. Chem.
1998, 63, 2982–2987.
5. Jung, M. E.; Lew, W. J. Org. Chem. 1991, 56, 1348–1349.
6. For examples, see: Conte, V.; Di Furia, F.; Moro, S.
Tetrahedron Lett. 1996, 47, 8609–8612.
The observation that only moderate yields were attain-
able from optimized synthetic procedures, which are
outlined in Scheme 3, was unexpected and deserves a
comment. This fact had been noted for the
chloroethenylation step in the synthesis of (+)-1 in an
earlier report.3 According to our experience, this issue
has to be associated with the significant steric crowding
in 2,2,3,5,6,6-substituted tetrahydropyrans that some-
times rendered seemingly elementary reactions into
troublesome processes.
In summary, we have devised a new synthesis of
aplysiapyranoid A (1) and its isomer epi-1, both as
racemates. The selected strategy supplements the exist-
ing approach.3 It offers potential for future syntheses of
new aplysiapyranoid derivatives, since it takes profit
from a transition metal-catalyzed oxidation in the
bromine cyclization step and enables the preparation of
related compounds under mild and neutral conditions
using radical-based transformations.
7. Motherwell, W. B.; Imboden, C. In Radicals in Organic
Synthesis; Renaud, P.; Sibi, M. P., Eds.; Wiley-VCH:
Weinheim, 2001; Vol. 1, pp. 109–134.
8. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless,
K. B. J. Org. Chem. 1981, 46, 3936–3938.
9. Mimoun, H.; Mignard, M.; Brechot, P.; Saussine, L. J.
Am. Chem. Soc. 1986, 108, 3711–3718.
10. Hartung, J.; Greb, M. J. Organomet. Chem. 2002, 661,
67–84.
11. The procedure has been applied in: Hartung, J.; Kunz, P.;
Laug, S.; Schmidt, P. Synlett 2003, 51–54.
12. Corey, E. J.; Ha, D.-C. Tetrahedron Lett. 1988, 29,
3171–3174.
Acknowledgements
13. Gonza´lez, A. G.; Mart´ın, J. D.; Pe´rez, C.; Ram´ırez, M.
A.; Ravelo, F. Tetrahedron Lett. 1981, 22, 5071–5072.
14. Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc.
1986, 108, 7408–7410.
Generous financial support was provided by the
Deutsche Forschungsgemeinschaft (Grants, Ha 1705/6-
1 and 8-1) and the Fonds der Chemischen Industrie.
Further, we express our gratitude to Mrs. Katharina
§ 1: 1H NMR (CDCl3, 400 MHz): l=1.38 (s, 3H), 1.43 (s, 6H),
2.61–2.68 (m, 2H), 4.39 (dd, J=7.8, 5.0 Hz, 1H, CHBr), 4.47 (dd,
J=6.2, 4.0 Hz, 1H, CHBr), 6.14 (d, J=13.8 Hz, 1H), 6.18 (d,
J=13.8 Hz, 1H). 13C NMR (CDCl3, 101 MHz): l=27.3, 28.7, 29.0,
37.3, 54.6, 55.1, 75.8, 76.0, 118.4, 138.4. epi-1: 1H NMR (CDCl3,
400 MHz): l=1.36 (s, 3H), 1.47 (s, 3H), 1.53 (s, 3H), 2.59–2.70 (m,
2H), 3.87 (mc, 2H, 2 CHBr), 6.09 (d, J=13.1 Hz, 1H), 6.29 (d,
J=13.1 Hz, 1H). 13C NMR (CDCl3, 101 MHz): l=22.1, 23.3, 30.4,
38.3, 52.8, 53.9, 76.8, 77.1, 119.9, 137.8.