2670 J ournal of Medicinal Chemistry, 1998, Vol. 41, No. 15
Communications to the Editor
(2) 5-HT1D and 5-HT1B receptors were formerly known as 5-HT1DR
and 5-HT1Dâ, respectively. (a) Weinshank, R. L.; Zgombick, J .
M.; Macchi, M. J .; Branchek, T. A.; Hartig, P. R. Human
Serotonin 1D Receptor is Encoded by a Subfamily of two Distinct
Genes: 5-HT1DR and 5-HT1Dâ. Proc. Nat. Acad. Sci. U.S.A. 1992,
89, 3630-3634. (b) Leysen, J . E.; Gommeren, W.; Heylen, L.;
Luyten, W. H. M. L.; van de Weyer, I.; Vanhoenacker, P.;
Haegeman, G.; Schotte, A.; van Gompel, P.; Wouters, R.; Lesage,
A. S. Alniditan, a New 5-Hydroxytryptamine1D Agonist and
Migraine-Abortive Agent: Ligand-Binding Properties of Human
5-Hydroxytryptamine1DR, Human 5-Hydroxytryptamine1Dâ, and
Calf 5-Hydroxytryptamine1D Receptors Investigated with [3H]5-
Hydroxytryptamine and [3H]Alniditan. Mol. Pharmacol. 1996,
50, 1567-1580. (c) Pauwels, P. J .; Colpaert, F. C. Selective
Antagonism of Human 5-HT1D and 5-HT1B Receptor-Mediated
Responses in Stably Transfected C6-Glial Cells by Ketanserin
and GR 127, 935. Eur. J . Pharmacol. 1996, 300, 141-145. (d)
Connor, H. E.; Beattie, D. T. 5-Hydroxytryptamine Receptor
Subtypes and Migraine. In Migraine: Pharmacology and Genet-
ics; Sandler, M., Ferrari, M., Harnett, S., Eds.; Chapman and
Hall: London, 1996; pp 18-31.
(10) (a) Mirchandani, H. L.; Chien, Y. W. Intestinal Absorption of
Dideoxynucleosides: Characterization Using a Multiloop in Situ
Technique. J . Pharm. Sci. 1995, 84, 44-48. (b) Dennis, M. J .
Absorption Processes. Comprehensive Med. Chem. Vol 5, pp
1-19. (c) Smith, D. A.; J ones, B. C.; Walker, D. K. Design of
Drugs Involving the Concepts and Theories of Drug Metabolism
and Pharmacokinetics. Med. Res. Rev. 1996, 16, 243-266. (d)
Chan, O. H.; Stewart, B. H. Physicochemical and Drug-Delivery
Considerations for Oral Drug Bioavailability. Drug Discovery
Today 1996, 1, 461-473.
(11) (a) Resnati, G. Synthesis of Chiral and Bioactive Fluoroorganic
Compounds. Tetrahedron 1993, 49, 9385-9445. (b) For a whole
issue devoted to fluorine chemistry, see: Chem. Rev. 1996, 96
(5).
(12) Hudlicky, M. Fluorination with Diethylaminosulfur Trifluoride
and Related Aminofluorosulfuranes. Org. React. 1988, 35, 513-
637.
(13) 6-Aza-6-tert-butyloxycarbonyl-1-oxaspiro[2.5]octane (9) was pre-
pared from 1-tert-butyloxycarbonyl-4-piperidone and trimethyl-
sulphoxonium iodide: Corey, E. J .; Chaykovsky, M. Methyle-
necyclohexane Oxide. Organic Syntheses; Wiley: New York,
1973; Collect. Vol. V, 1973; pp 755-757.
(3) Humphrey, P. P. A.; Goadsby, P. J . The Mode of Action of
Sumatriptan is Vascular? A Debate. Cephalalgia 1994, 14, 401-
410.
(4) (a) Buzzi, M. G.; Bonamini, M.; Moskowitz, M. A. Neurogenic
Model of Migraine. Cephalalgia 1995, 15, 277-280. (b) Bouche-
let, I.; Cohen, Z.; Case, B.; Seguela, P.; Hamel, E. Differential
Expression of Sumatriptan-Sensitive 5-Hydroxytryptamine Re-
ceptors in Human Trigeminal Ganglia and Cerebral Blood
Vessels. Mol. Pharmacol. 1996, 50, 219-223.
(14) Mesylate 13 was prepared from the corresponding alcohol using
standard conditions (MsCl, Et3N, THF). The precursor alcohol
was synthesized by Fischer indole reaction between 4-(1,2,4-
triazol-4-yl)phenylhydrazine20 and 3,4-dihydro-2H-pyran in re-
fluxing 4% H2SO4: Castro, J . L.; et al. Substituted Piperidine
Derivatives as Selective Agonists of 5-HT Receptors. World
Patent Appl. WO 97/18202, 1997.
(15) Lal, G. S. Site-Selective Fluorination of Organic Compounds
Using 1-Alkyl-4-fluoro-1,4-diazabicyclo[2.2.2]octane Salts (Se-
lectfluor Reagents). J . Org. Chem. 1993, 58, 2791-2796.
(16) Reductive alkylation of 16 with benzylamine gave predominantly
the cis-isomer 17 (ca 8:1) when sodium triacetoxyborohydride
in dichloroethane was used. This selectivity was, however, lost
(17:18 ca. 1:1) when sodium cyanoborohydride in MeOH-AcOH
was utilized. The relative stereochemistry of these compounds
could be unambiguously assigned by 500 MHz NMR spectros-
copy, details of which will be given in a forthcoming publication.
(17) pKa determinations were carried out by potentiometric titration
as previously described: Castro, J . L.; Broughton, H. B.; Russell,
M. G. N.; Rathbone, D.; Watt, A. P.; Ball, R. G.; Chapman, K.
L.; Patel, S.; Smith, A. J .; Marshall, G. R.; Matassa, V. G.
5-(Piperidin-2-yl)- and 5-(Homopiperidin-2-yl)-1,4-benzodiaze-
pines: High-Affinity, Basic Ligands for the Cholecystokinin-B
Receptor. J . Med. Chem. 1997, 40, 2491-2501.
(18) Sattler, A.; Haufe, G. High Regioselectivity in the Alternative
Cleavage of Terminal Epoxides with Different Sources of Nu-
cleophilic Fluoride. J . Fluorine Chem. 1994, 69, 185-190.
(19) It is noteworthy that the intermediate primary ozonide was quite
resistant to reductive decomposition under the usual dimethyl
sulfide conditions. However, this could be cleanly and rapidly
achieved by treatment with triethylamine at low temperature,
which follows a different mechanistic pathway: Hon, Y.-S.; Lin,
S.-W.; Chen, Y.-J . A Convenient and Efficient Workup of
Ozonolysis Reactions Using Triethylamine. Synth. Commun.
1993, 23, 1543-1553.
(20) Sternfeld, F.; Baker, R.; Broughton, H. B.; Guiblin, A. R.; J elley,
R. A.; Matassa, V. G.; Reeve, A. J .; Beer, M. S.; Stanton, J . A.;
Hargreaves, R. J .; Shepheard, S. L.; Longmore, J .; Razzaque,
Z.; Graham, M. I.; Sohal, B.; Street, L. J . The Chemical Evolution
of N,N-Dimethyl-2-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]ethylamine
(L-741,604) and Analogues: Potent and Selective Agonists for
5-HT1D Receptors. Bioorg. Med. Chem. Lett. 1996, 6, 1825-1830.
(5) Martin, G. R. Inhibition of the Trigemino-Vascular System with
5-HT1D Agonist Drugs: Selectively Targetting Additional Sites
of Action. Eur. Neurol. 1996, 36, 13-18.
(6) Coronary vasoconstriction is principally mediated through ac-
tivation of 5-HT2A receptors, although a small 5-HT1B component
is also present. Because the triptans show good selectivity over
5-HT2A receptors, the potential for coronary vasoconstriction with
these agents at clinically relevant antimigraine doses is very
low. (a) Ishida, T.; Sakoda, T.; Hirata, K.; Inoue, N.; Kawashima,
S.; Yokoyama, M. Molecular Analysis of Serotonin (5-Hydrox-
ytryptamine; 5-HT) Receptor Subtypes in Human Coronary
Arteries. J pn. Circ. J . 1997, 61, 621. (b) Ottervanger, J . P.;
Stricker, B. H. Ch. Cardiovascular Adverse Reactions to Sumatrip-
tan. Cause for Concern? CNS Drugs 1995, 3, 90-98. (c) Ferro,
A.; Longmore, J .; Hill, R. G.; Brown, M. J . A Comparison of the
Contractile Effects of 5-Hydroxytryptamine, Sumatriptan and
MK-462 on Human Coronary Artery in vitro. Br. J . Clin.
Pharmacol. 1995, 40, 245-251. (d) Longmore, J .; Boulanger, C.
M.; Desta, B.; Hill, R. G.; Schofield, W. N.; Taylor, A. A. 5-HT1D
Receptor Agonists and Human Coronary Artery Reactivity in
vitro: Crossover Comparisons of 5-HT and Sumatriptan with
Rizatriptan and L-741, 519. Br. J . Clin. Pharmacol. 1996, 42,
431-441.
(7) Castro, J . L.; Street, L. J .; Guiblin, A. R.; J elley, R. A.; Russell,
M. G. N.; Sternfeld, F.; Beer, M. S.; Stanton, J . A.; Matassa, V.
G. 3-[2-(Pyrrolydin-1-yl)ethyl]indoles and 3-[3-(Piperidin-1-yl)-
propyl]indoles: Agonists for the h5-HT1D Receptor with High
Selectivity over the h5-HT1B Subtype. J . Med. Chem. 1997, 40,
3497-3500.
(8) MacLeod, A. M.; Street, L. J .; Reeve, A. J .; J elley, R. A.;
Sternfeld, F.; Beer, M. S.; Stanton, J . A.; Watt, A. P.; Rathbone,
D.; Matassa, V. G. Selective, Orally Active 5-HT1D Receptor
Agonists as Potential Antimigraine Agents. J . Med. Chem. 1997,
40, 3501-3503.
(9) (a) Hillgren, K. M.; Kato, A.; Borchardt, R. T. In Vitro Systems
for Studying Intestinal Drug Absorption. Med. Res. Rev. 1995,
15, 83-109. (b) Brayden, D. Human Intestinal Epithelia Cell
Monolayers as Prescreens for Oral Drug Absorption. Pharm.
News 1997, 3, 11-15. (c) Stewart, B. H.; Chan, O. H.; J ezyk,
N.; Fleisher, B. H. Discrimination Between Drug Candidates
Using Models for Evaluation of Intestinal Absorption. Adv. Drug.
Delivery Rev. 1997, 23, 27-45.
J M980204E