E
K. Yamamoto et al.
Cluster
Synlett
observed on changing the chalcogenide catalyst; see: Gieuw, M.
H.; Leung, V. M.-Y.; Ke, Z.; Yeung, Y.-Y. Adv. Synth. Catal. 2018,
360, 4306.
1949, 164, 241. (b) Braude, E. A.; Waight, E. S. J. Chem. Soc. 1952,
1116. (c) Finkelstein, M.; Hart, S. A.; Moore, M.; Ross, S. D.;
Eberson, L. J. Org. Chem. 1986, 51, 3548.
(8) For recent reviews on electrochemical synthesis, see: (a) Franke,
R. Beilstein J. Org. Chem. 2014, 10, 2858. (b) Yoshida, J.-i.;
Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108,
2265. (c) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017,
117, 13230. (d) Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.;
Zirbes, M.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2018, 57, 5594.
(e) Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.;
Waldvogel, S. R. Angew. Chem. Int. Ed. 2018, 57, 6018. (f) Jiang,
Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
(9) For recent examples, see: (a) Zhang, S.; Li, L.; Wang, H.; Li, Q.;
Liu, W.; Xu, K.; Zeng, C. Org. Lett. 2018, 20, 252. (b) Zhang, S.;
Lian, F.; Xue, M.; Qin, T.; Li, L.; Zhang, X.; Xu, K. Org. Lett. 2017,
19, 6622. (c) Gao, W.-C.; Xlong, Z.-Y.; Pirhaghani, S.; Wirth, T.
Synthesis 2019, 51, 276. (d) Barjau, J.; Königs, P.; Kataeva, O.;
Waldvogel, S. R. Synlett 2008, 2309.
(22) Diethyl allyl(methyl)malonate afforded a diastereoisomeric
mixture of the corresponding lactones in moderate yield with
almost no diastereoselectivity under the chemical conditions.
(23) Bromoiminolactonization of Compounds 1; General Proce-
dure under Chemical Conditions
NBS (178 mg, 2.0 equiv) was added to a solution of 1 (0.5 mmol)
in toluene (6 mL), and the mixture was stirred at rt until all the
starting material was consumed (TLC). The reaction was
quenched with sat. aq Na2S2O3, and the resulting mixture was
extracted with EtOAc. The combined organic layers were dried
(MgSO4), filtered, and concentrated under reduced pressure.
The residue was purified by column chromatography [silica gel,
hexane–EtOAc] to afford 2 and 2′.
Bromoiminolactonization of Compounds 1; General Proce-
dure under Electrochemical Conditions
(10) (a) Schäfer, H. J. Top. Curr. Chem. 1990, 152, 91. (b) Torii, S.;
Tanaka, H. In Organic Electrochemistry, 4th ed; Lund, H.;
Hammerich, O., Ed.; Marcel Dekker: New York, 2001, 499.
(11) (a) Brandt, J. D.; Moeller, K. D. Org. Lett. 2005, 7, 3553.
(b) Perkins, R. J.; Xu, H.-C.; Campbell, J. M.; Moeller, K. D. Beil-
stein J. Org. Chem. 2013, 9, 1630.
(12) Gao, X.; Yuan, G.; Chen, H.; Jiang, H.; Li, Y.; Qi, C. Electrochem.
Commun. 2013, 34, 242.
(13) Haupt, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 242.
(14) (a) Röse, P.; Emge, S.; Yoshida, J.-i.; Hilt, G. Beilstein J. Org. Chem.
2015, 11, 174. (b) Shimizu, A.; Hayashi, R.; Ashikari, Y.; Nokami,
T.; Yoshida, J.-i. Beilstein J. Org. Chem. 2015, 11, 242.
In a beaker-type undivided cell, substrate 1 (0.5 mmol), Et4NBr
(322 mg, 2.0 equiv), Zn(OTf)2 (18.2 mg, 10 mol%), and 2,2′-
bipyridine (7.8 mg, 10 mol%) were dissolved in CH2Cl2 (6 mL),
and the mixture was stirred for 20 min. The reaction vessel was
fitted with a Pt plate electrode (1.0 × 2.0 cm2), and 4 F/mol of
electricity was supplied under constant-current conditions (20
mA). The reaction was then quenched with sat. aq Na2S2O3 and
the resulting mixture was extracted with CH2Cl2. The combined
organic layers were dried (MgSO4), filtered, and concentrated
under reduced pressure. The residue was purified by column
chromatography [silica gel, hexane–EtOAc] to afford 2 and 2′.
(cis)-5-(Bromomethyl)-3-ethyl-N-phenyl-2-(phenylim-
ino)tetrahydrofuran-3-carboxamide (2b) (Prepared under
Chemical Conditions)
(15) (a) Liang, S.; Zeng, C.-C.; Luo, X.-G.; Ren, F.-z.; Tian, H.-Y.; Sun,
B.-G.; Little, R. D. Green Chem. 2016, 18, 2222. (b) Ashikari, Y.;
Shimizu, A.; Nokami, T.; Yoshida, J.-i. J. Am. Chem. Soc. 2013,
135, 16070.
Colorless oil; yield: 187 mg (93%). IR (ATR): 692, 756, 1198,
1445, 1487, 1551, 1599, 1686, 3065 cm–1 1H NMR (400 MHz,
.
(16) Cu(OTf)2 is an effective Lewis acid catalyst for nucleophilic addi-
tion of malonates to 3,4-didehydropiperidinium ions; see:
Matsumura, Y.; Minato, D.; Onomura, O. J. Organomet. Chem.
2007, 692, 654.
(17) Applied currents of 10 or 30 mA led to a decrease in the yield of
2; see Supporting Information for details.
CDCl3): = 10.66 (s, 1 H), 7.59 (dd, J = 8.5, 1.2 Hz, 2 H), 7.39–7.32
(m, 4 H), 7.26–7.24 (m, 2 H), 7.18–7.14 (m, 1 H), 7.13–7.09 (m, 1
H), 4.76–4.69 (m, 1 H), 3.50 (d, J = 5.4 Hz, 2 H), 2.79 (dd, J = 13.9,
8.0 Hz, 1 H), 2.48 (dd, J = 13.7, 6.8 Hz, 1 H), 2.19–2.05 (m, 2 H),
1.10 (t, J = 7.3 Hz, 3 H). 13C NMR (100 MHz, CDCl3): = 168.2,
163.0, 144.5, 137.8, 128.9, 128.7, 124.8, 124.1, 123.2, 119.5,
78.1, 56.5, 35.0, 34.9, 33.7, 9.25. HRMS (EI): m/z [M]+ calcd for
(18) CCDC 1893915 and 1893916 contain the supplementary crys-
tallographic data for compounds 2a and 2a′. The data can be
obtained free of charge from The Cambridge Crystallographic
C
20H2181BrN2O2: 402.0766; found: 402.0763.
(trans)-5-(Bromomethyl)-3-ethyl-N-phenyl-2-(phenylim-
ino)tetrahydrofuran-3-carboxamide (2b′) (Prepared under
Electrochemical Conditions)
(19) The symmetrical bisallyl malonamide 1 (R1 = Allyl; R2 = Ph) gave
a complex mixture under both chemical and electrochemical
conditions.
Colorless oil; yield: 146 mg (73%). IR (ATR): 692, 756, 1198,
1443, 1489, 1541, 1599, 1684, 3323 cm–1 1H NMR (400 MHz,
.
(20) Although the combination of NBS and Et4NBr can generate
molecular bromine, molecular bromine itself provided 2a as a
major product (Table 2, entry 2). The use of Cu(OTf)2 with
molecular bromine did not affect the selectivity (99% yield of 2;
2a/2a′ = 73:27).
(21) Braude and Waight have reported the formation of complexes
between tetraalkylammonium salts and NBS, and the formation
of a 1:1 complex between Et4NBr and NBS has been reported by
Finkelstein et al.; see: (a) Braude, E. A.; Waight, E. S. Nature
CDCl3): = 9.49 (s, 1 H), 7.56 (d, J = 8.3 Hz, 2 H), 7.37–7.33 (m, 4
H), 7.23 (t, J = 9.0 Hz, 2 H), 7.16–7.10 (m, 2 H), 4.62–4.56 (m, 1
H), 3.66 (dd, J = 10.7, 4.8 Hz, 1 H), 3.57 (dd, J = 11.2, 3.9 Hz, 1 H),
3.34 (dd, J = 13.2, 6.3 Hz, 1 H), 2.32–2.22 (m, 1 H), 2.10–1.96 (m,
2 H), 1.05 (t, J = 7.3 Hz, 3 H). 13C NMR (100 MHz, CDCl3): =
167.0, 163.6, 145.1, 137.7, 129.0, 128.7, 124.6, 124.3, 123.1,
119.3, 78.6, 58.3, 34.0, 33.6, 33.1, 9.5. HRMS (EI): m/z [M]+ calcd
for C20H2181BrN2O2: 402.0766; found: 402.0763.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–E