Organic Letters
Letter
N.; Jakubke, H. D. Peptides: Chemistry and Biology; Wiley−VCH:
Weinheim, Germany, 2002. (d) Humphrey, J. M.; Chamberlin, A. R.
Chem. Rev. 1997, 97, 2243−2266.
Scheme 7. Proposed Mechanism for the N-Formylation of
Amines
(2) (a) Hett, R.; Fang, Q. K.; Gao, Y.; Wald, S. A.; Senanayake, C.
H. Org. Process Res. Dev. 1998, 2, 96−99. (b) Batchelor, F. R.; Doyle,
F. P.; Nayler, J. H. C.; Rolinson, G. N. Nature 1959, 183, 257−258.
(3) (a) Larson, A. M.; Polson, J.; Fontana, R. J.; Davern, T. J.; Lalani,
E.; Hynan, L. S.; Reisch, J. S.; Schiødt, F. V.; Ostapowicz, G.; Shakil,
A. O.; Lee, W. M. Hepatology 2005, 42, 1364−1372. (b) Tramposch,
K. M.; Nair, X.; Gendimenico, G. J.; Tetrault, G. B.; Chen, S.; Kiss, I.;
Whiting, G.; Bonney, R. J. J. Pharm. Pharmacol. 1992, 44, 379−386.
(4) Kniss, A. R. Nat. Commun. 2017, 8, 14865.
(5) (a) Glomb, M. A.; Pfahler, C. J. Biol. Chem. 2001, 276, 41638−
41647. (b) Armelin, E.; Franco, L.; Galan, A. R.; Puiggali, J. Macromol.
Chem. Phys. 2002, 203, 48−58.
(6) (a) Ben Halima, T.; Masson-Makdissi, J.; Newman, S. G. Angew.
corresponding amide D to form the radical anion29
intermediate E. ESI-MS studies of the KOtBu mediated
transamidation of DMF with p-anisidine in the presence of
TEMPO and galvinoxyl further indicated the formation of the
corresponding radical intermediate C (Figure S2, SI). The
amine radical C then couples with the intermediate E to
generate F, which provides the corresponding N-formylated
products.
́
Chem., Int. Ed. 2018, 57, 12925−12929. (b) Galvez, A. O.; Schaack,
C. P.; Noda, H.; Bode, J. W. J. Am. Chem. Soc. 2017, 139, 1826−1829.
(c) Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Chem. Soc.
Rev. 2014, 43, 2714−2742. (d) Takise, R.; Muto, K.; Yamaguchi.
Chem. Soc. Rev. 2017, 46, 5864−5888. (e) Valeur, E.; Bradley, M.
Chem. Soc. Rev. 2009, 38, 606−631.
(7) de Figueiredo, R. M.; Suppo, J. S.; Campagne, J. M. Chem. Rev.
2016, 116, 12029−12122.
(8) (a) Zhou, T.; Li, G.; Nolan, S. P.; Szostak, M. Org. Lett. 2019,
21, 3304−3309. (b) Lanigan, R. M.; Sheppard, T. D. Eur. J. Org.
Chem. 2013, 2013, 7453−7465. (c) Muma, N. A.; Mi, Z. ACS Chem.
Neurosci. 2015, 6, 961−969. (d) Pattabiraman, V. R.; Bode, J. W.
Nature 2011, 480, 471−479. (e) Becerra-Figueroa, L.; Ojeda-Porras,
In summary, we have developed an experimentally simple
and novel KOtBu mediated transamidation of amides with
different amine partners to obtain diverse carboxamides in
good to excellent yields. The method is compatible with a
range of amines containing various functional groups. The
utility of the protocol is further demonstrated by the synthesis
of enamides via ring opening of cycloproylamine. Thus, this
catalyst-free, metal-free, inexpensive, and easily scalable
protocol for amide synthesis would be useful for the synthesis
of pharmaceuticals and bioactive molecules.
́
A.; Gamba-Sanchez, D. J. Org. Chem. 2014, 79, 4544−4552.
(f) Dander, J. E.; Baker, E. L.; Garg, N. K. Chem. Sci. 2017, 8,
6433−6438. (g) Meng, G.; Lei, P.; Szostak, M. Org. Lett. 2017, 19,
2158−2161. (h) Shi, S.; Szostak, M. Chem. Commun. 2017, 53,
10584−10587. (i) Sonawane, R. B.; Rasal, N. K.; Jagtap, S. V. Org.
̈
Lett. 2017, 19, 2078−2081. (j) Zhang , M.; Imm, S.; Bahn, S.;
Neubert, L.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2012, 51,
3905−3909.
ASSOCIATED CONTENT
* Supporting Information
■
(9) Eldred, S. E.; Stone, D. A.; Gellman, S. H.; Stahl, S. S. J. Am.
Chem. Soc. 2003, 125, 3422−3423.
S
The Supporting Information is available free of charge on the
(10) Shi, M.; Cui, S. C. Synth. Commun. 2005, 35, 2847−2858.
(11) Tamura, M.; Tonomura, T.; Shimizu, K.-i.; Satsuma, A. Green
Chem. 2012, 14, 717−724.
Experimental procedures, 1H NMR and 13C NMR
(12) (a) Atkinson, B. N.; Chhatwal, A. R.; Lomax, H. V.; Walton, J.
W.; Williams, J. M. Chem. Commun. 2012, 48, 11626−11628.
(b) Stephenson, N. A.; Zhu, J.; Gellman, S. H.; Stahl, S. S. J. Am.
Chem. Soc. 2009, 131, 10003−10008.
AUTHOR INFORMATION
(13) Ghosh, S. C.; Li, C. C.; Zeng, H. C.; Ngiam, J. S. Y.; Seayad, A.
M.; Chen, A. Adv. Synth. Catal. 2014, 356, 475−484.
(14) Rao, S. N.; Mohan, D. C.; Adimurthy, S. Org. Lett. 2013, 15,
1496−1499.
(15) (a) Allen, C. L.; Atkinson, B. N.; Williams, J. M. Angew. Chem.,
Int. Ed. 2012, 51, 1383−1386. (b) Shimizu, Y.; Morimoto, H.; Zhang,
M.; Ohshima, T. Angew. Chem., Int. Ed. 2012, 51, 8564−8567.
(16) Dineen, T. A.; Zajac, M. A.; Myers, A. G. J. Am. Chem. Soc.
2006, 128, 16406−16409.
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
(17) (a) Lanigan, R. M.; Starkov, P.; Sheppard, T. D. J. Org. Chem.
2013, 78, 4512−4523. (b) Mohy El Dine, T.; Erb, W.; Berhault, Y.;
Rouden, J.; Blanchet, J. J. Org. Chem. 2015, 80, 4532−4544.
(c) Nguyen, T. B.; Sorres, J.; Tran, M. Q.; Ermolenko, L.; Al-
Mourabit, A. Org. Lett. 2012, 14, 3202−3205. (d) Starkov, P.;
Sheppard, T. D. Org. Biomol. Chem. 2011, 9, 1320−1323.
(18) Rao, S. N.; Mohan, D. C.; Adimurthy, S. Green Chem. 2014, 16,
4122−4126.
ACKNOWLEDGMENTS
■
The authors thank Professor Hiriyakkanavar Ila on the
occasion of her 75th birthday. J.D. thanks DST-India for a
SwarnaJayanti fellowship (DST/SJF/CSA-01/2015-16). This
work was supported by DST and CSIR-India for funding. T.G.
and S.J. thank CSIR, India for a research fellowship.
(19) (a) Chikkulapalli, A.; Aavula, S. K.; Mona Np, R.; Karthikeyan,
C.; Kumar, V.; Sulur G, M.; Sumathi, S. Tetrahedron Lett. 2015, 56,
REFERENCES
■
́
3799−3803. (b) Suchy, M.; Adam, A.; Elmehriki, A.; Hudson, R. H.
(1) (a) Whitford, D. Proteins: Structure and Function; Wiley: New
York, 2005. (b) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The
Amide Linkage Structural Significance in Chemistry, Biochemistry, and
Materials Science; Wiley−Interscience: New York, 2000. (c) Sewald,
E. Org. Lett. 2011, 13, 3952−3955.
(20) Vanjari, R.; Allam, B. K.; Singh, K. N. RSC Adv. 2013, 3, 1691−
1694.
D
Org. Lett. XXXX, XXX, XXX−XXX