ketenimine, and carbodiimide have also been successfully
employed to form enyne-ketenes (Moore cyclization),4
enyne-ketenimines,5 and enyne-carbodiimides6 for biradical-
forming reactions.
Scheme 1
The use of the isoelectronic nitrile group as a substitute
for the alkynyl group was less successful. (Z)-â-Alkynyl-
acrylonitriles apparently did not exhibit any propensity to
undergo aza-Bergman cyclization in 1,4-cyclohexadiene at
150 °C for 2 h.7 (Z)-2,4,5-Hexatrienenitriles and related
compounds also showed remarkable thermal stability at 150-
260 °C.8 Only in a benzannulated example where the allenic
terminus was substituted with a sulfone group was the
cycloaromatization reaction observed.9
The chemical reactivities of isonitrile in the benzannulated
enyne-isonitrile system were exploited for tin- and sulfur-
mediated intramolecular free-radical cyclization as well as
nucleophile-induced intramolecular cyclization, producing
substituted indoles and quinolines.10 However, the feasibility
of generating biradicals by thermolysis of enyne-isonitriles
did not appear to have been explored. Theoretical studies
suggest a relatively low barrier of activation enthalpy and
favorable exothermicity for the aza-Bergman cyclization
reaction of (Z)-but-1-en-3-yn-1-yl isonitrile to form 2,4-
didehydropyridine compared to other types of Bergman
cyclization reaction.11 We envisioned that by placing the
reactive isonitrile and allenic moieties on the adjacent carbon
atoms of benzene, the resulting benzannulated enallene-
isonitrile system could provide excellent opportunities for
generating biradicals under mild thermal conditions.
1,3-Prototropic rearrangement of enyne-isonitriles provided
a simple synthetic route to enallene-isonitriles as outlined
in Scheme 1. The 2-alkynylformanilide 1 was prepared by
the palladium-catalyzed cross-coupling between 2-iodofor-
manilide and 3-phenyl-1-propyne. Dehydration of 1 with
POCl3/i-Pr2NH12 then afforded in situ the enyne-isonitrile
2, which exhibited IR signals at 2121 and 2202 cm-1
attributable to the isonitrile and the alkynyl functionalities,
respectively. The enyne-isonitrile 2 did not appear to undergo
cycloaromatization even after it was kept at 0 °C for 6 h
and then at room temperature for an additional 2 h. However,
treatment of 2 with potassium t-butoxide at room temperature
then afforded 11H-indeno[1,2-b]quinoline (6) in 52% yield
from 1.
(3) (a) Schmittel, M.; Strittmatter, M.; Kiau, S. Tetrahedron Lett. 1995,
36, 4975-4978. (b) Schmittel, M.; Strittmatter, M.; Vollmann, K.; Kiau,
S. Tetrahedron Lett. 1996, 37, 999-1002. (c) Schmittel, M.; Strittmatter,
M.; Kiau, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 1843-1845. (d)
Schmittel, M.; Kiau, S.; Siebert, T.; Strittmatter, M. Tetrahedron Lett. 1996,
37, 7691-7694. (e) Schmittel, M.; Keller, M.; Kiau, S.; Strittmatter, M.
Chem. Eur. J. 1997, 3, 807-816. (f) Schmittel, M.; Steffen, J.-P.; Maywald,
M.; Engels, B.; Helten, H.; Musch, P. J. Chem. Soc., Perkin Trans. 2 2001,
1331-1339.
(4) (a) Karlsson, J. O.; Nguyen, N. V.; Foland, L. D.; Moore, H. W. J.
Am. Chem. Soc. 1985, 107, 3392-3393. (b) Foland, L. D.; Karlsson, J. O.;
Perri, S. T.; Schwabe, R.; Xu, S. L.; Patil, S.; Moore, H. W. J. Am. Chem.
Soc. 1989, 111, 975-989. (c) Chow, K.; Nguyen, N. V.; Moore, H. W. J.
Org. Chem. 1990, 55, 3876-3880. (d) Tarli, A.; Wang, K. K. J. Org. Chem.
1997, 62, 8841-8847. (e) For an excellent review, see: Moore, H. W.;
Yerxa, B. R. Chemtracts 1992, 273-313.
Presumably, the reaction proceeded through an initial 1,3-
prototropic rearrangement, induced by potassium t-butoxide,
to form the desired enallene-isonitrile 3. Potassium t-butoxide
was selected because it was known to be inert to aryl
isonitriles.13 It was also reported that the 1,3-prototropic
rearrangement of 3-phenylpropyne and 1,3-diarylpropynes
could be promoted by potassium hydroxide and basic
alumina, respectively, at ambient temperature.14 The enallene-
isonitrile 3, generated in situ, then underwent cycloaroma-
tization to give the biradical 4a. It is worth noting that the
biradical 4a could also be regarded as the zwitterion 4b with
the aryl cationic center being stabilized by the lone pair
electrons on the adjacent nitrogen atom. A subsequent
intramolecular radical-radical coupling of 4a or an intramo-
(5) (a) Shi, C.; Wang, K. K. J. Org. Chem. 1998, 63, 3517-3520. (b)
Schmittel, M.; Steffen, J.-P.; Angel, M. A. W.; Engels, B.; Lennartz, C.;
Hanrath, M. Angew. Chem., Int. Ed. 1998, 37, 1562-1564.
(6) (a) Shi, C.; Zhang, Q.; Wang, K. K. J. Org. Chem. 1999, 64, 925-
932. (b) Zhang, Q.; Shi, C.; Zhang, H.-R.; Wang, K. K. J. Org. Chem.
2000, 65, 7977-7983. (c) Lu, X.; Petersen, J. L.; Wang, K. K. J. Org.
Chem. 2002, 67, 5412-5415. (d) Lu, X.; Petersen, J. L.; Wang, K. K. J.
Org. Chem. 2002, 67, 7797-7801. (e) Li, H.; Petersen, J. L.; Wang, K. K.
J. Org. Chem. 2003, 68, 5512-5518. (f) Schmittel, M.; Steffen, J.-P.; Engels,
B.; Lennartz, C.; Hanrath, M. Angew. Chem., Int. Ed. 1998, 37, 2371-
2373. (g) Schmittel, M.; Rodr´ıguez, D.; Steffen, J.-P. Angew. Chem., Int.
Ed. 2000, 39, 2152-2155. (h) Alajar´ın, M.; Molina, P.; Vidal, A. J. Nat.
Prod. 1997, 60, 747-748.
(7) (a) David, W. M.; Kerwin, S. M. J. Am. Chem. Soc. 1997, 119, 1464-
1465. (b) Feng, L.; Kumar, D.; Kerwin, S. M. J. Org. Chem. 2003, 68,
2234-2242.
(8) (a) Wang, K. K.; Wang, Z.; Sattsangi, P. D. J. Org. Chem. 1996, 61,
1516-1518. (b) Gillmann, T.; Heckhoff, S. Tetrahedron Lett. 1996, 37,
839-840.
(9) Wu, M.-J.; Lin, C.-F.; Chen, S.-H.; Lee, F.-C. J. Chem. Soc., Perkin
Trans. 1 1999, 2875-2876.
(10) (a) Rainier, J. D.; Kennedy, A. R.; Chase, E. Tetrahedron Lett. 1999,
40, 6325-6327. (b) Rainier, J. D.; Kennedy, A. R. J. Org. Chem. 2000,
65, 6213-6216. (c) Suginome, M.; Fukuda, T.; Ito, Y. Org. Lett. 1999, 1,
1977-1979.
(11) Debbert, S. L.; Cramer, C. J. Int. J. Mass Spectrom. 2000, 201,
1-15.
(12) Obrecht, R.; Herrmann, R.; Ugi, I. Synthesis 1985, 400-402.
(13) Ugi, I.; Meyr, R. Organic Syntheses; Willy: New York, 1973;
Collect. Vol. V, pp 1060-1063.
(14) (a) Landor, P. D. In The Chemistry of the Allenes; Landor, S. R.,
Ed.; Academic Press: London, 1982; Vol. 1, pp 44-47. (b) Jacobs, T. L.;
Dankner, D. J. Org. Chem. 1957, 22, 1424-1427.
3278
Org. Lett., Vol. 5, No. 18, 2003