C O M M U N I C A T I O N S
Scheme 2 a
The synthesis of 1 described here should provide access to an-
alogous structures for future biological and SAR studies. Inves-
tigations of the asymmetric desymmetrization (3 f 2) to prepare
enantiomerically pure 1 and biological studies of the synthetic inter-
mediates are currently underway and will be reported in due course.
Acknowledgment. This study was partly supported by the
MEXT (13780464) and the Chugai Pharmaceutical Award for
Synthetic Organic Chemistry to M.I.
Supporting Information Available: Experimental procedures and
spectroscopic data (PDF). This material is available free of charge via
References
(1) (a) Huang, J.-M.; Yokoyama, R.; Yang C.-S.; Fukuyama, Y. Tetrahedron
Lett. 2000, 41, 6111. (b) Huang, J.-M.; Yang, C.-S.; Tanaka, M.;
Fukuyama, Y. Tetrahedron 2001, 57, 4691.
(2) For a review on neurotrophic activity, see: Hefti, F. Annu. ReV. Pharmacol.
Toxicol. 1997, 37, 239.
(3) Birman, V. B.; Danishefsky, S. J. J. Am. Chem. Soc. 2002, 124, 2080.
(4) For a synthetic study, see: Hong, B.-C.; Shr, Y.-J.; Wu, J.-L.; Gupta, A.
K.; Lin, K.-J. Org. Lett. 2002, 4, 2249.
(5) For reviews on the construction of eight-membered rings, see: (a) Petasis,
N. A.; Patane, M. A. Tetrahedron 1992, 48, 5757. (b) Mehta, G.; Singh,
V. Chem. ReV. 1999, 99, 881.
(6) For selected examples of the synthesis of bicyclo[3.3.0]octane systems
from eight-membered rings, see: (a) Negri, J. T.; Morwick, T.; Doyon,
J.; Wilson, P. D.; Hickey, E. R.; Paquette, L. A. J. Am. Chem. Soc. 1993,
115, 12189. (b) Paquette, L. A.; Geng, F. J. Am. Chem. Soc. 2002, 124,
9199. For a review of extensive studies in this field by Paquette, see: (c)
Paquette, L. A. Eur. J. Org. Chem. 1998, 1709. (d) Wender, P. A.; Correia,
C. R. D. J. Am. Chem. Soc. 1987, 109, 2523. (e) Wender, P. A.; Gamber,
G. G.; Hubbard, R. D.; Zhang, L. J. Am. Chem. Soc. 2002, 124, 2876. (f)
Zora, M.; Koyuncu, I.; Yucel, B. Tetrahedron Lett. 2000, 41, 7111. (g)
Verma, S. K.; Fleischer, E. B.; Moore, H. W. J. Org. Chem. 2000, 65,
8564. (h) Hodgson, D. M.; Cameron, I. D. Org. Lett. 2001, 3, 441. (i)
Dongol, K. G.; Wartchow, R.; Butenscho¨n, H. Eur. J. Org. Chem. 2002,
1972. (j) Hamura, T.; Tsuji, S.; Matsumoto, T.; Suzuki, K. Chem. Lett.
2002, 280.
(7) For reviews on the related approaches including two-directional synthesis,
see: (a) Poss, C. S.; Schreiber, S. L. Acc. Chem. Res. 1994, 27, 9. (b)
Magnuson, S. R. Tetrahedron 1995, 51, 2167. (c) Hoffmann, R. W. Angew.
Chem., Int. Ed. 2003, 42, 1096.
(8) (a) Schenck, G. O.; Hartmann, W.; Steinmetz, R. Chem. Ber. 1963, 96,
498. (b) Gauvry, N.; Comoy, C.; Lescop, C.; Huet, F. Synthesis 1999,
574.
(9) Ireland, R. E.; Norbeck, D. W. J. Org. Chem. 1985, 50, 2198.
(10) (a) Fu, G. C.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1993, 115,
9856. (b) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc.
1996, 118, 100. For recent reviews of RCM, see: (c) Fu¨rstner, A. Angew.
Chem., Int. Ed. 2000, 39, 3013. (d) Trnka, T. M.; Grubbs, R. H. Acc.
Chem. Res. 2001, 34, 18.
(11) Balskus, E. P.; Me´ndez-Andino, J.; Arbit, R. M.; Paquette, L. A. J. Org.
Chem. 2001, 66, 6695.
(12) Zhao, P.; Collum, D. B. J. Am. Chem. Soc. 2003, 125, 4008.
(13) (a) Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994, 35, 8019. (b)
Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. J. Org. Chem.
1995, 60, 7272.
a Reagents and conditions: (a) mCPBA, CH2Cl2, rt, 81%; (b) DBU,
CH2Cl2, -40 °C, 81%; (c) IBX, DMSO, rt, 94%; (d) BrCH2Br(OEt),
PhNMe2, CH2Cl2, -78 °C to rt, 62% (dr ) 4:1, 100% based on recovered
16); (e) Bu3SnH, BEt3/O2, toluene, rt, 57% (17â), 16% (17r); (f) CSA,
EtOH, rt, 86%; (g) TMSOTf, EtN(i-Pr)2, CH2Cl2, -20 °C; (h) Me2NCH2+I-,
CH2Cl2, rt; (i) mCPBA, CH2Cl2, rt, 70% (three steps); (j) TFA/H2O (9:1),
rt, 94%; (k) MsCl, Et3N, THF, 50 °C, 77%; (l) LiBH(s-Bu)3 (L-Selectride),
THF, MS4A, -78 °C then 2-Tf2N-5-chloropyridine, -78 °C, 99%; (m)
Pd(OAc)2, Ph3P, Bu3N, HCOOH, DMF, 40 °C, 89%; (n) DIBAL, CH2Cl2,
-78 °C, 88% (dr ) 6:1); (o) Na, NH3, THF/EtOH (5:1), -78 °C, 100%;
(p) DOWEX 50WX2, THF/H2O (2:1), rt; (q) Ag2CO3 on Celite, toluene,
130 °C, 64% (two steps), C14-oxidized regioisomer of 25, 4% (two steps);
(r) dimethyldioxirane, CH2Cl2, rt, 96%; (s) p-TsOH, CH2Cl2, rt, 81%.
stereoselectivity can be dramatically improved with the use of enol
ether 21 that was synthesized as follows.17 First, acetal 18 was
transformed to enol ether 19 by a two-step sequence: (i) treatment
with TFA/H2O and (ii) mesylation and base-induced elimination.
The subsequent 1,4-reduction of enone 19 using L-Selectride,
followed by an in situ triflation of the resultant enolate,18,19
generated 20, which was then converted to olefin 21 through
palladium-mediated reduction.20 Reduction of ketone 21 using
DIBAL at -78 °C in CH2Cl2 provided the desired isomer 22 (â-
OH:R-OH ) 6:1); presumably the enol ether contributed in reducing
the steric hindrance of the hydride-accepting R-face.
Birch reduction of the benzyl ethers of 22 generated triol 23, of
which the enol ether was hydrated to give 24. Simultaneous Fetizon
oxidation21 of the C11- and C12-alcohols in tetraol 24 proceeded
with remarkable regio- and chemoselectivities to produce the desired
bis-lactone 25. Lastly, epoxidation of 25 using dimethyldioxirane22
generated 26 as the sole product, which was subjected to acidic
conditions to afford the synthetic (()-merrilactone A (1) through
the epoxide-opening oxetane formation.1,3,23
(14) (a) Nozaki, K.; Oshima, K.; Utimoto, K. J. Am. Chem. Soc. 1987, 109,
2547. For a review, see: (b) Ollivier, C.; Renaud, P. Chem. ReV. 2001,
101, 3415.
(15) (a) Ueno, Y.; Chino, K.; Watanabe, M.; Moriya, O.; Okawara, M. J. Am.
Chem. Soc. 1982, 104, 5564. (b) Stork, G.; Mook, R., Jr.; Biller, S. A.;
Rychnovsky, S. D. J. Am. Chem. Soc. 1983, 105, 3741. For a recent review
on radical reactions, see: (c) Zhang, W. Tetrahedron 2001, 57, 7237.
(16) Danishefsky, S.; Kitahara, T.; McKee, R.; Schuda, P. F. J. Am. Chem.
Soc. 1976, 98, 6715.
(17) The reductions of many other substrates led to low chemo- or stereose-
lectivity, which will be discussed in a full account.
(18) Crisp, G. T.; Scott, W. J. Synthesis 1985, 335.
(19) Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33, 6299.
(20) Cacchi, S.; Morera, E.; Ortar, G. Tetrahedron Lett. 1984, 25, 4821.
(21) (a) Fetizon, M.; Golfier, M. Compt. Rend. 1968, 267, 900. (b) McKillop,
A.; Young, D. W. Synthesis 1979, 401.
(22) (a) Murray, R. W. Chem. ReV. 1989, 89, 1187. (b) Adam, W.; Curci, R.;
Edwards, J. O. Acc. Chem. Res. 1989, 22, 205.
(23) Professor Y. Fukuyama (Tokushima Bunri University) is gratefully
acknowledged for providing NMR spectra of merrilactone A.
JA036587+
9
J. AM. CHEM. SOC. VOL. 125, NO. 36, 2003 10773