6472
C. Blanc et al. / Tetrahedron Letters 44 (2003) 6469–6473
match/mismatch behavior (entries 12/13). As well, the
same antipode is produced with both diastereomers 1a
and 1b during the allylation of 16. Finally, the transfor-
mation of the cyclic substrate 17 is occurring with a
very low enantioselectivity.
8. For phosphite–oxazoline, see: (a) Heldmann, D.; See-
bach, D. Helv. Chim. Acta 1999, 82, 1096; (b) Escher, I.;
Pfaltz, A. Tetrahedron 2000, 56, 2879; (c) Alexakis, A.;
Rosset, S.; Allamand, J.; March, S.; Guillen, F.; Ben-
haim, C. Synlett 2001, 1375.
9. For phosphoramidite–oxazolines, see: Hilgraf, R.; Pfaltz,
In summary, chiral aminophosphine–oxazoline auxil-
iaries are easily accessible from natural amino acids and
alcohols. The two phosphorous atom protection modes
utilized constitute valuable tools for the synthesis of
such auxiliaries even those possessing a stereogenic
phosphorous atom. The auxiliaries described are
efficient in the alkylation of diphenyl allyl acetate. Even
if the selectivity is lower with other substrates, it com-
pares well to other systems described. Other ligands of
that family and their use in enantioselective transforma-
tions will be reported soon.
A. Synlett 1999, 1814.
10. (a) Agbossou, F.; Carpentier, J.-F.; Hapiot, F.; Suisse, I.;
Mortreux, A. Coord. Chem. Rev. 1998, 178–180, 1615; (b)
Agbossou-Niedercorn, F.; Suisse, I. Coord. Chem. Rev.,
in press.
11. Pasquier, C.; Naili, S.; Mortreux, A.; Agbossou, F.;
Pe´linski, L.; Brocard, J.; Eilers, J.; Reiners, I.; Peper, V.;
Martens, J. Organometallics 2000, 19, 5723.
12. Xu, G.; Gilbertson, S. R. Tetrahedron Lett. 2002, 43,
2811.
13. Moulin, D.; Bago, S.; Bauduin, C.; Darcel, C.; Juge´, S.
Tetrahedron: Asymmetry 2000, 11, 3939 and references
cited therein.
14. (a) Castro, B.; Dormoy, J. R.; Evin, G.; Selve, C. Tetra-
hedron Lett. 1975, 16, 1219; (b) Fehrentz, J. A.; Castro,
B. Synthesis 1983, 676.
Acknowledgements
15. Sammakia, T.; Latham, H. A. J. Org. Chem. 1996, 61, 5.
16. Gilbertson, S. R.; Wang, X. J. Org. Chem. 1996, 61, 434.
17. Smart, B. E. Org. Synth. 1988, 67, 20.
We thank Professor A. Mortreux and Dr. Lydie Pe´lin-
ski for fruitful discussions. We also thank Nadia Dje-
lassi for some experiments. We are grateful to CNRS
for financial support. C.B. acknowledges MEN for a
doctoral fellowship.
18. The origin of the yield loss experienced during the reduc-
tion of the PꢁO moiety is linked to the purification
procedure. Actually, the necessary filtration over silica gel
had to be carried out under basic conditions (silica gel
washed with NEt3) in order to avoid a cleavage of the
PꢀN bond, the latter being sensitive to the acidic medium
produced by the hydrolysis of the excess of HSiCl3 on the
silica gel.
References
1. (a) Asymmetric Catalysis in Organic Synthesis; Wiley:
New York, 1994; (b) Catalytic Asymmetric Synthesis;
Ojima, I., Ed.; VCH: New York, 1993; (c) Brunner, H.;
Zettlmeier, W. Handbook of Enantioselective Catalysis;
VCH: Weinheim, 1993; (d) Comprehensive Asymmetric
Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H.,
Eds.; Springer: Berlin, 1999; Vols. 1–3.
2. Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34,
1769.
3. Von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl.
1993, 32, 566.
19. 1a: 1H NMR (300 MHz, toluene-d8): l 0.53 (d, J=6.8
Hz, 3H, CH3); 0.59 (d, J=6.8 Hz, 3H, CH3); 1.25 (br.
hept., J=6.8 Hz, 1H, CH(CH3)2); 3.07 (dd, J=15.9 and
5.9 Hz, 1H, ArCHtransCHcisCHN); 3.20 (d, J=16.0 Hz,
1H, ArCHtransCHcisCHN); 3.45 (m, 2H, CH2-O); 3.66
(dd., J=6.7 and 7.9 Hz, 1H, NCHCH2O); 4.05 (d, J=
16.4 Hz, 1H, ArCHH%N); 4.43 (d, J=16.1, 1H,
ArCHH%N); 4.57 (br. t, J=6.4 Hz, 1H, CHNP); 6.88 (m,
3H, Harom.); 6.97–7.13 (m, 7H, Harom.); 7.46 (m, 2H,
H
arom.); 7.88 (m, 2H, Harom.). 31P{1H} NMR (121.5 MHz,
4. Dawson, G. J.; Frost, C. G.; Williams, J. M. J.; Cote, S.
CDCl3): l 64.6 ppm (s).
J. Tetrahedron Lett. 1993, 34, 3149.
2a: 1H NMR (300 MHz, C6D6): l 0.74 (d, J=6.7 Hz, 3H,
CH3); 0.81 (d, J=6.7 Hz, 3H, CH3); 1.36 (m, 1H,
CHHCH2CH); 1.53 (br. sept., J=6.6 Hz, 1H,
CH(CH3)2); 1.80 (m, 2H, CHH-CHHCH); 1.96 (m, 1H,
CHH-CH); 2.74 (m, 2H, CHHN); 3.12 (m, 2H, CHH-
N); 3.66 (m, 2H, CH2O); 3.82 (dd, J=5.7 and 7.6 Hz,
1H, NCH-CH2O); 4.66 (m, 1H, CH); 7.27–7.39 (m, 6H,
5. (a) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33,
336 and references cited therein; (b) Pfaltz, A. J. Hetero-
cyclic Chem. 1999, 36, 1437; (c) Braunstein, P.; Naud, F.
Angew. Chem., Int. Ed. 2001, 40, 681; (d) Espinet, P.;
Soulantica, K. Coord. Chem. Rev. 1999, 193–195, 499; (e)
Gomez, M.; Muller, G.; Rocamora, M. Coord. Chem.
Rev. 1999, 193–195, 769.
H
arom.); 7.93–8.02 (m, 4H, Harom.). 31P{1H} NMR (121.5
6. (a) Ogawara, M.; Yoshida, K.; Kamei, H.; Uozumi, Y.;
Hayashi, T. Tetrahedron: Asymmetry 1998, 9, 1779; (b)
Hou, D. R.; Reibenspies, J. H.; Burgess, K. J. Org.
Chem. 2001, 66, 206.
7. For phosphinite–oxazoline, see: (a) Gomez-Simon, M.;
Jansat, S.; Muller, G.; Panyella, D.; Font-Bardia, M.;
Solans, X. J. Chem. Soc., Dalton Trans. 1997, 3755; (b)
Blankenstein, J.; Pfaltz, A. Angew. Chem., Int. Ed. 2001,
40, 4445. For aminophosphine–oxazoline, see: (c) Cozzi,
P. G.; Zimmermann, N.; Hilgraf, R.; Schaffner, S.;
Pfaltz, A. Adv. Synth. Catal. 2001, 343, 450.
MHz, C6D6): l 48.1 ppm (s).
20. General procedure for the allylic alkylation: Under nitro-
gen, in a 100 mL Schlenk tube equiped with a stir bar,
the aminophosphine oxazoline and [Pd(h3-C3H5)Cl]2
(0.45 equiv.) are reacted in a freshly distilled and
degassed solvent. Then, 1,3-diphenyl allyl acetate (100
equiv.) is added to the solution and the mixture is stirred
at room temperature for 1 h. In a separate Schlenk tube,
a mixture of dimethyl malonate and BSA (both as 3
equiv. with respect to the allylic substrate) and KOAc
(catalytic amount) in 3 mL of the solvent is prepared.